1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
|
Source: geiser
Section: editors
Priority: optional
Maintainer: Debian Emacsen Team <debian-emacsen@lists.debian.org>
Uploaders: David Bremner <bremner@debian.org>,
Dhavan Vaidya <quark@codingquark.com>,
Xiyue Deng <manphiz@gmail.com>,
Build-Depends: debhelper-compat (= 13),
dh-elpa,
texinfo,
Standards-Version: 4.7.2
Rules-Requires-Root: no
Homepage: https://www.nongnu.org/geiser/
Vcs-Git: https://salsa.debian.org/emacsen-team/geiser.git
Vcs-Browser: https://salsa.debian.org/emacsen-team/geiser
Package: elpa-geiser
Architecture: all
Depends: ${misc:Depends},
${elpa:Depends},
Enhances: emacs
Provides: geiser
Breaks: geiser (<< 0.7-1)
Replaces: geiser (<< 0.7-1)
Description: Generic Emacs/Scheme interaction mode
Geiser is a generic Emacs/Scheme interaction mode, featuring an
enhanced REPL and a set of minor modes improving Emacs' basic scheme
major mode.
.
Geiser supports Guile, Chicken, Gauche, Chibi, MIT-Scheme, Gambit,
Racket, Stklos, Kawa and Chez. Each one has a separate ELPA package
(geiser-guile, geiser-chicken, etc.) that you should install to use
your favourite scheme.
.
Main functionalities:
- Evaluation of forms in the namespace of the current module.
- Macro expansion.
- File/module loading.
- Namespace-aware identifier completion (including local bindings,
names visible in the current module, and module names).
- Autodoc: the echo area shows information about the signature of
the procedure/macro around point automatically.
- Jump to definition of identifier at point.
- Direct access to documentation, including docstrings (when the
implementation provides them) and user manuals.
- Listings of identifiers exported by a given module (Guile).
- Listings of callers/callees of procedures (Guile).
- Rudimentary support for debugging (list of
evaluation/compilation error in an Emacs' compilation-mode
buffer).
- Support for inline images in schemes, such as Racket, that treat
them as first order values.
|