File: control

package info (click to toggle)
libmath-planepath-perl 129-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 8,100 kB
  • sloc: perl: 115,748; ansic: 299; sh: 272; lisp: 73; makefile: 13
file content (43 lines) | stat: -rw-r--r-- 1,678 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Source: libmath-planepath-perl
Maintainer: Debian Perl Group <pkg-perl-maintainers@lists.alioth.debian.org>
Uploaders: Florian Schlichting <fsfs@debian.org>
Section: perl
Testsuite: autopkgtest-pkg-perl
Priority: optional
Build-Depends: debhelper-compat (= 13),
               perl
Build-Depends-Indep: libconstant-defer-perl <!nocheck>,
                     libdata-float-perl <!nocheck>,
                     libmath-libm-perl <!nocheck>,
                     libnumber-fraction-perl <!nocheck>
Standards-Version: 4.5.1
Vcs-Browser: https://salsa.debian.org/perl-team/modules/packages/libmath-planepath-perl
Vcs-Git: https://salsa.debian.org/perl-team/modules/packages/libmath-planepath-perl.git
Homepage: https://metacpan.org/release/Math-PlanePath
Rules-Requires-Root: no

Package: libmath-planepath-perl
Architecture: all
Depends: ${misc:Depends},
         ${perl:Depends},
         libconstant-defer-perl,
         libmath-libm-perl
Description: Perl module to calculate mathematical paths through a 2-D plane
 Math::PlanePath is a collection of Perl modules to generate some paths through
 the 2-D X,Y plane, mainly integer oriented, and including
 .
  * Square numbering of Ulam's spiral
  * Pentagonal, hexagonal, heptagonal spirals
  * Pyramid and triangular spirals and rows
  * An infinite knight's tour
  * Vogel's sunflower floret (and variations)
  * Sacks' quadratic spiral
  * Spiral of Theodorus
  * Peano, Hilbert and Z-Order
  * Gosper's flowsnake
  * Koch curve and quadric curve
  * Sierpinski triangle
  * Dragon curves
  * Pixellated rings, and by hypotenuse distance
  * Trees of rationals and Pythagorean triples
  * Some complex base related patterns