File: control

package info (click to toggle)
pysolid 0.3.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,880 kB
  • sloc: python: 386; makefile: 12
file content (45 lines) | stat: -rw-r--r-- 1,741 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Source: pysolid
Section: python
Priority: optional
Maintainer: Debian GIS Project <pkg-grass-devel@lists.alioth.debian.org>
Uploaders: Antonio Valentino <antonio.valentino@tiscali.it>
Rules-Requires-Root: no
Testsuite: autopkgtest-pkg-pybuild
Build-Depends: cmake,
               debhelper-compat (= 13),
               dh-python,
               dh-sequence-numpy3,
               dh-sequence-python3,
               gfortran,
               pybuild-plugin-pyproject,
               python3-all-dev,
               python3-numpy,
               python3-matplotlib,
               python3-pytest <!nocheck>,
               python3-scikit-build-core,
               python3-scipy,
               python3-setuptools,
               python3-setuptools-scm,
               xauth <!nocheck>,
               xvfb <!nocheck>
Standards-Version: 4.6.2
Vcs-Browser: https://salsa.debian.org/debian-gis-team/pysolid
Vcs-Git: https://salsa.debian.org/debian-gis-team/pysolid.git
Homepage: https://github.com/insarlab/PySolid

Package: python3-pysolid
Architecture: any
Depends: python3-matplotlib,
         python3-scipy,
         ${python3:Depends},
         ${shlibs:Depends},
         ${misc:Depends}
Description: Python wrapper for solid Earth tides
 Python based solid Earth tides (PySolid) is a thin Python wrapper
 of the solid.for program (by Dennis Milbert based on
 dehanttideinelMJD.f from V. Dehant, S. Mathews, J. Gipson and
 C. Bruyninx) to calculate solid Earth tides in east/north/up direction
 (section 7.1.1 in the 2010 IERS Conventions).
 Solid Earth tides introduces very long spatial wavelength components
 in SAR/InSAR observations, as shown in the Sentinel-1 data with
 regular acquisitions and large swaths (Yunjun et al., 2022).