1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
Source: vedo
Section: python
Priority: optional
Maintainer: Debian Science Maintainers <debian-science-maintainers@lists.alioth.debian.org>
Uploaders: Drew Parsons <dparsons@debian.org>
Build-Depends: debhelper-compat (= 13),
dh-python,
pybuild-plugin-pyproject,
python3,
python3-setuptools,
python3-vtk9,
python3-numpy,
python3-deprecated,
python3-pygments,
python3-scipy,
python3-typing-extensions
Standards-Version: 4.7.0
Homepage: https://vedo.embl.es/
Vcs-Browser: https://salsa.debian.org/science-team/vedo
Vcs-Git: https://salsa.debian.org/science-team/vedo.git
Package: python3-vedo
Architecture: all
Depends: ${python3:Depends}, ${misc:Depends}
Breaks: python3-vtkplotter
Replaces: python3-vtkplotter
Recommends: python3-scipy, python3-matplotlib
Suggests: dvipng, texlive-latex-base | texlive,
python3-vedo-examples
Description: Python module for 3D scientific visualization with VTK
A Python module for scientific visualization, analysis and animation
of 3D objects and point clouds based on VTK and numpy.
.
Intuitive and straightforward API which can be combined with VTK
seamlessly in a program, whilst maintaining access to the full range
of VTK native classes.
.
It includes a large set of working examples for the all following
functionalities:
.
* Import meshes from VTK format, STL, Wavefront OBJ, 3DS, XML,
Neutral, GMSH, OFF, PCD (PointCloud), volumetric TIFF stacks, SLC,
MHD, 2D images PNG, JPEG.
* Export meshes as ASCII or binary to VTK, STL, OBJ, PLY formats.
* Mesh analysis through the built-in methods of VTK package.
Additional analysis tools like Moving Least Squares, mesh
morphing.
* Tools to visualize and edit meshes (cutting a mesh with another
mesh, slicing, normalizing, moving vertex positions, etc..).
Interactive cutter widget.
* Split mesh based on surface connectivity. Extract the largest
connected area.
* Calculate mass properties, like area, volume, center of mass,
average size etc.
* Calculate vertex and face normals, curvatures, feature edges.
Fill mesh holes.
* Subdivide faces of a mesh, increasing the number of vertex
points. Mesh simplification.
* Coloring and thresholding of meshes based on associated scalar
or vectorial data.
* Point-surface operations: find nearest points, determine if a
point lies inside or outside a mesh.
* Create primitive objects like: spheres, arrows, cubes, torus,
ellipsoids...
* Generate glyphs (associating a mesh to each vertex of a source
mesh).
* Create animations easily by just defining the position of the
displayed objects in the 3D scene. Add trailing lines to moving
objects automatically.
* Straightforward support for multiple sync-ed or independent
renderers in the same window.
* Registration (alignment) of meshes with different techniques.
* Mesh smoothing with Laplacian and WindowedSinc algorithms.
* Delaunay triangulation in 2D and 3D.
* Generate meshes by joining nearby lines in space.
* Find the closest path from one point to another, travelling
along the edges of a mesh.
* Find the intersection of a mesh with a line (or with another
mesh).
* Analysis of Point Clouds:
- Moving Least Squares smoothing of 2D, 3D and 4D clouds
- Fit lines, planes and spheres in space
- Perform PCA (Principal Component Analysis) on point
coordinates
- Identify outliers in a distribution of points
- Decimate a cloud to a uniform distribution.
* Basic histogramming and function plotting in 1D and 2D.
* Interpolate scalar and vectorial fields with Radial Basis
Functions and Thin Plate Splines.
* Analysis of volumetric datasets:
- Isosurfacing of volumes
- Direct maximum projection rendering
- Generate volumetric signed-distance data from an input
surface mesh
- Probe a volume with lines and planes.
* Add sliders and buttons to interact with the scene and the
individual objects.
* Examples using SHTools package for spherical harmonics
expansion of a mesh shape.
* Integration with the Qt5 framework.
* Support for FEniCS/dolfin package.
.
vedo is published in M. Musy et al. "vedo, a Python
module for scientific visualization and analysis of 3D objects and
point clouds based on VTK (Visualization Toolkit)", Zenodo, 10
February 2019, doi:10.5281/zenodo.2561401.
Formerly known as vtkplotter.
.
This package installs the library for Python 3.
It also include vedo and vtkconvert executables.
Package: python3-vedo-examples
Architecture: all
Multi-Arch: foreign
Depends: ${python3:Depends}, ${misc:Depends}
Breaks: python3-vtkplotter-examples
Replaces: python3-vtkplotter-examples
Recommends: python3-vedo
Description: 3D scientific visualization with VTK (examples)
vedo is a Python module for scientific visualization, analysis
and animation of 3D objects and point clouds based on VTK and numpy.
.
Intuitive and straightforward API which can be combined with VTK
seamlessly in a program, whilst maintaining access to the full range
of VTK native classes.
.
vedo is published in M. Musy et al. "vedo, a Python
module for scientific visualization and analysis of 3D objects and
point clouds based on VTK (Visualization Toolkit)", Zenodo, 10
February 2019, doi:10.5281/zenodo.2561401.
Formerly known as vtkplotter.
.
This package installs example scripts.
|