from numpy.ma import masked_where as numpy_ma_masked_where

from ..constants import _file_to_fh
from ..functions import (open_files_threshold_exceeded,
                         close_one_file,
                         parse_indices,
                         get_subspace)

from ..data.filearray import FileArray

from .functions import _open_um_file, _close_um_file

from .umread.umfile import Rec

_filename_to_file = _file_to_fh.setdefault('UM', {})


# ====================================================================
#
# UMFileArray object
#
# ====================================================================

class UMFileArray(FileArray):
    '''A sub-array stored in a PP or UM fields file.
    
**Initialization**

:Parameters:

    file : str
        The file name in normalized, absolute form.

    dtype : numpy.dtype
        The data type of the data array on disk.

    ndim : int
        The number of dimensions in the unpacked data array.

    shape : tuple
        The shape of the unpacked data array.

    size : int
        The number of elements in the unpacked data array.

    header_offset : int
        The start position in the file of the header.

    data_offset : int
        The start position in the file of the data array.

    disk_length : int
        The number of words on disk for the data array, usually
        LBLREC-LBEXT. If set to 0 then `!size` is used.

:Examples:

>>> a = UMFileArray(file='file.pp', header_offset=3156, data_offset=3420,
...                 dtype=numpy.dtype('float32'), shape=(30, 24),
...                 size=720, ndim=2, disk_length=0)

>>> a = UMFileArray(file='packed_file.pp', header_offset=3156, data_offset=3420,
...                 dtype=numpy.dtype('float32'), shape=(30, 24),
...                 size=720, ndim=2, disk_length=423)

    '''
    def __getitem__(self, indices):
        '''

Implement indexing

x.__getitem__(indices) <==> x[indices]

Returns a numpy array.

''' 
        f = self.open()

        rec = Rec.from_file_and_offsets(f, self.header_offset,
                                        self.data_offset,
                                        self.disk_length)

        int_hdr  = rec.int_hdr
        real_hdr = rec.real_hdr

        array = rec.get_data().reshape(int_hdr.item(17,), int_hdr.item(18,))

        if indices is not Ellipsis:
            indices = parse_indices(array, indices)               
            array = get_subspace(array, indices)                

        LBUSER2 = int_hdr.item(38,)

        if LBUSER2 == 3:
            # Return the numpy array now if it is a boolean array
            return array.astype(bool)

        integer_array = LBUSER2 == 2

        # ------------------------------------------------------------
        # Convert to a masked array
        # ------------------------------------------------------------
        # Set the fill_value from BMDI
        fill_value = real_hdr.item(17,)
        if fill_value != -1.0e30:
            # -1.0e30 is the flag for no missing data
            if integer_array:
                # The fill_value must be of the same type as the data
                # values
                fill_value = int(fill_value)       

            # Mask any missing values
            mask = (array == fill_value)
            if mask.any():
                array = numpy_ma_masked_where(mask, array, copy=False)    
        #--- End: if

        # ------------------------------------------------------------
        # Unpack the array using the scale_factor and add_offset, if
        # either is available
        # ------------------------------------------------------------
        # Treat BMKS as a scale_factor if it is neither 0 nor 1
        scale_factor = real_hdr.item(18,)
        if scale_factor != 1.0 and scale_factor != 0.0:
            if integer_array:
                scale_factor = int(scale_factor)
            array *= scale_factor

        # Treat BDATUM as an add_offset if it is not 0
        add_offset = real_hdr.item(4,)
        if add_offset != 0.0:
            if integer_array:
                add_offset = int(add_offset)
            array += add_offset

        # Return the numpy array
        return array
    #--- End: def

    def __str__(self):
        '''

x.__str__() <==> str(x)

'''      
        return "%s%s in %s" % (self.header_offset, self.shape, self.file)
    #--- End: def

    @property
    def file_pointer(self):
        '''
'''
        return (self.file, self.header_offset)
    #--- End: def

    def close(self):
        '''

Close the file containing the data array.

If the file is not open then no action is taken.

:Returns:

    None

:Examples:

>>> f.close()

'''
        _close_um_file(self.file)
    #--- End: def
   
    def open(self):
        '''

Open the file containing the data array.

:Returns:

    out : um.umread.umfile.File

:Examples:

>>> f.open()

'''    
        return _open_um_file(self.file)
    #--- End: def

#--- End: class
