#!/usr/bin/env python
from __future__ import print_function
from .test_python_common import *  # common subroutines

import cmor._cmor
import os

pth = os.path.split(os.path.realpath(os.curdir))
if pth[-1] == 'Test':
    ipth = opth = '.'
else:
    ipth = opth = 'Test'


myaxes = numpy.zeros(9, dtype='i')
myaxes2 = numpy.zeros(9, dtype='i')
myvars = numpy.zeros(9, dtype='i')


cmor.setup(
    inpath=ipth,
    set_verbosity=cmor.CMOR_NORMAL,
    netcdf_file_action=cmor.CMOR_REPLACE,
    exit_control=cmor.CMOR_EXIT_ON_MAJOR)
cmor.dataset(
    outpath=opth,
    experiment_id="historical",
    institution="GICC (Generic International Climate Center, Geneva, Switzerland)",
    source="GICCM1 2002: atmosphere:  GICAM3 (gicam_0_brnchT_itea_2, T63L32); ocean: MOM (mom3_ver_3.5.2, 2x3L15); sea ice: GISIM4; land: GILSM2.5",
    calendar="standard",
    realization=1,
    contact="Rusty Koder (koder@middle_earth.net)",
    history="Output from archive/giccm_03_std_2xCO2_2256.",
    comment="Equilibrium reached after 30-year spin-up after which data were output starting with nominal date of January 2030",
    references="Model described by Koder and Tolkien (J. Geophys. Res., 2001, 576-591).  Also see http://www.GICC.su/giccm/doc/index.html  2XCO2 simulation described in Dorkey et al. '(Clim. Dyn., 2003, 323-357.)",
    leap_year=0,
    leap_month=0,
    month_lengths=None,
    model_id="GICCM1",
    forcing="Ant, Nat",
    institute_id="pcmdi",
    parent_experiment_id="piControlwithism", branch_time=18336.33)

tables = []
a = cmor.load_table("/git/cmip5-cmor-tables/Tables/CMIP6_grids")
tables.append(a)

t = 'CMIP6_Omon.json'
te = 'dissic'
u = 'mol m-3'
time = 'time'
ts = 'month'
tscl = 1.

t = 'CMIP5_cfSites'
te = 'pr'
u = 'kg m-2 s-1'
time = 'time1'
ts = 'days'
tscl = 2.e-2

tables.append(cmor.load_table("/git/cmip5-cmor-tables/Tables/%s" % t))
print ('Tables ids:', tables)

cmor.set_table(tables[0])

x, y, lon_coords, lat_coords, lon_vertices, lat_vertices = gen_irreg_grid(
    lon, lat)


myaxes[0] = cmor.axis(table_entry='y',
                      units='m',
                      coord_vals=y)
myaxes[1] = cmor.axis(table_entry='x',
                      units='m',
                      coord_vals=x)

grid_id = cmor.grid(axis_ids=myaxes[:2],
                    latitude=lat_coords,
                    longitude=lon_coords,
                    latitude_vertices=lat_vertices,
                    longitude_vertices=lon_vertices)
print ('got grid_id:', grid_id)
myaxes[2] = grid_id

mapnm = 'lambert_conformal_conic'
params = ["standard_parallel1",
          "longitude_of_central_meridian", "latitude_of_projection_origin",
          "false_easting", "false_northing", "standard_parallel2"]
punits = ["", "", "", "", "", ""]
pvalues = [-20., 175., 13., 8., 0., 20.]
cmor.set_grid_mapping(grid_id=myaxes[2],
                      mapping_name=mapnm,
                      parameter_names=params,
                      parameter_values=pvalues,
                      parameter_units=punits)

cmor.set_table(tables[1])
myaxes[3] = cmor.axis(table_entry=time,
                      units='%s since 1980' % ts)

pass_axes = [myaxes[3], myaxes[2]]

myvars[0] = cmor.variable(table_entry=te,
                          units=u,
                          axis_ids=pass_axes,
                          history='no history',
                          comment='no future'
                          )

ntimes = 2
for i in range(ntimes):
    data2d = read_2d_input_files(i, varin2d[0], lat, lon) * 1.E-6
    print ('writing time: ', i, data2d.shape ) # ,data2d
    # print Time[i],bnds_time[2*i:2*i+2]
    cmor.write(myvars[0], data2d, 1, time_vals=Time[i] * tscl,
               time_bnds=tscl * bnds_time[2 * i:2 * i + 2])
    print ('wrote')
cmor.close()
