CODA Python
The CODA Python interface consists of a Python package 'coda' containing several functions that allow the user to easily access data inside product files.
The CODA Python interface contains both a wrapping of the CODA C interface as well as a version of the higher level CODA functions as can be found in the IDL and MATLAB interfaces of CODA.
Contents
- CODA Definition Path
- High level CODA Data Types
- High level CODA Functions
coda.open
coda.open_as
coda.close
coda.get_attributes
coda.get_description
coda.fetch
coda.get_field_available
coda.get_field_count
coda.get_field_names
coda.get_size
coda.time_to_string
coda.time_to_utcstring
coda.get_unit
coda.version
coda.set_option_filter_record_fields
coda.get_option_filter_record_fields
- Low level CODA Data Types
- Low level CODA Functions
coda.init
coda.done
coda.set_option_bypass_special_types
coda.get_option_bypass_special_types
coda.set_option_perform_boundary_checks
coda.get_option_perform_boundary_checks
coda.set_option_perform_conversions
coda.get_option_perform_conversions
coda.set_option_use_fast_size_expressions
coda.get_option_use_fast_size_expressions
coda.set_option_use_mmap
coda.get_option_use_mmap
coda.NaN
coda.isNaN
coda.PlusInf
coda.MinInf
coda.isInf
coda.isPlusInf
coda.isMinInf
coda.c_index_to_fortran_index
coda.match_filefilter
coda.time_double_to_parts
coda.time_double_to_parts_utc
coda.time_parts_to_double_utc
coda.time_parts_to_string
coda.time_string_to_parts
coda.time_double_to_string
coda.time_double_to_string_utc
coda.time_string_to_double
coda.time_string_to_double_utc
coda.recognize_file
coda.open
coda.open_as
coda.close
coda.get_product_filename
coda.get_product_file_size
coda.get_product_format
coda.get_product_class
coda.get_product_type
coda.get_product_version
coda.get_product_root_type
coda.get_product_variable_value
coda.type_get_format_name
coda.type_get_class_name
coda.type_get_native_type_name
coda.type_get_special_type_name
coda.type_has_attributes
coda.type_get_format
coda.type_get_class
coda.type_get_read_type
coda.type_get_string_length
coda.type_get_bit_size
coda.type_get_name
coda.type_get_description
coda.type_get_unit
coda.type_get_fixed_value
coda.type_get_attributes
coda.type_get_num_record_fields
coda.type_get_record_field_index_from_name
coda.type_get_record_field_index_from_real_name
coda.type_get_record_field_type
coda.type_get_record_field_name
coda.type_get_record_field_real_name
coda.type_get_record_field_hidden_status
coda.type_get_record_field_available_status
coda.type_get_record_union_status
coda.type_get_array_num_dims
coda.type_get_array_dim
coda.type_get_array_base_type
coda.type_get_special_type
coda.type_get_special_base_type
coda.cursor_set_product
coda.cursor_goto
coda.cursor_goto_first_record_field
coda.cursor_goto_next_record_field
coda.cursor_goto_record_field_by_index
coda.cursor_goto_record_field_by_name
coda.cursor_goto_available_union_field
coda.cursor_goto_first_array_element
coda.cursor_goto_next_array_element
coda.cursor_goto_array_element
coda.cursor_goto_array_element_by_index
coda.cursor_goto_attributes
coda.cursor_goto_root
coda.cursor_goto_parent
coda.cursor_use_base_type_of_special_type
coda.cursor_has_ascii_content
coda.cursor_has_attributes
coda.cursor_get_string_length
coda.cursor_get_bit_size
coda.cursor_get_byte_size
coda.cursor_get_num_elements
coda.cursor_get_product_file
coda.cursor_get_depth
coda.cursor_get_index
coda.cursor_get_file_bit_offset
coda.cursor_get_file_byte_offset
coda.cursor_get_format
coda.cursor_get_type_class
coda.cursor_get_read_type
coda.cursor_get_special_type
coda.cursor_get_type
coda.cursor_get_record_field_index_from_name
coda.cursor_get_record_field_available_status
coda.cursor_get_available_union_field_index
coda.cursor_get_array_dim
coda.cursor_read_int8
coda.cursor_read_uint8
coda.cursor_read_int16
coda.cursor_read_uint16
coda.cursor_read_int32
coda.cursor_read_uint32
coda.cursor_read_int64
coda.cursor_read_uint64
coda.cursor_read_float
coda.cursor_read_double
coda.cursor_read_char
coda.cursor_read_string
coda.cursor_read_bits
coda.cursor_read_bytes
coda.cursor_read_int8_array
coda.cursor_read_uint8_array
coda.cursor_read_int16_array
coda.cursor_read_uint16_array
coda.cursor_read_int32_array
coda.cursor_read_uint32_array
coda.cursor_read_int64_array
coda.cursor_read_uint64_array
coda.cursor_read_float_array
coda.cursor_read_double_array
coda.cursor_read_char_array
coda.cursor_read_int8_partial_array
coda.cursor_read_uint8_partial_array
coda.cursor_read_int16_partial_array
coda.cursor_read_uint16_partial_array
coda.cursor_read_int32_partial_array
coda.cursor_read_uint32_partial_array
coda.cursor_read_int64_partial_array
coda.cursor_read_uint64_partial_array
coda.cursor_read_float_partial_array
coda.cursor_read_double_partial_array
coda.cursor_read_char_partial_array
coda.cursor_read_complex_double_pair
coda.cursor_read_complex_double_pairs_array
coda.cursor_read_complex_double_split
coda.cursor_read_complex_double_split_array
coda.expression_get_type_name
coda.expression_from_string
coda.expression_delete
coda.expression_get_type
coda.expression_is_constant
coda.expression_is_equal
coda.expression_eval_bool
coda.expression_eval_integer
coda.expression_eval_float
coda.expression_eval_string
coda.expression_eval_node
CODA Definition Path
Note that in order to access products whose formats are defined using .codadef files, you should let CODA now where these .codadef files are stored. By default the CODA Python interface will look for .codadef files in a directory relative to the location of the CODA Python package (../../../../share/coda/definitions
).
You can override the default location by setting the CODA_DEFINITION environment variable. This environment variable should be a ':' separated (';' on Windows) list of absolute paths to directories containing .codadef files or absolute paths to .codadef files themselves (or a mix of those).
When you import the CODA Python package this will trigger an initialisation of CODA, so you should make sure that the CODA_DEFINITION environment variable is set before you import the CODA Python package. Setting the environment variable can be performed from within Python using:
import os os.putenv('CODA_DEFINITION', '<your codadef search path>') # ... import coda
High level CODA Data Types
When reading data from a product file, CODA will use the following mapping to translate the ingested data into Python data structures:
CODA class | CODA read type / CODA special type | Python data type | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
record | coda.Record | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
array | This will be a numpy array (numpy.array ) object. The following table relates the CODA array base type to the numpy base type:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | int8 | Python Integer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | uint8 | Python Integer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | int16 | Python Integer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | uint16 | Python Integer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | int32 | Python Integer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | uint32 | Python Long | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | int64 | Python Long | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
integer | uint64 | Python Long | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
real | float | Python Float | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
real | double | Python Float | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
text | char | Python String | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
text | string | Python String | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
raw | bytes | numpy.array object with base type uint8 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
special | no_data | None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
special | time | Python Float | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
special | complex | Python Complex Number |
High level CODA Functions
Most high level CODA functions require a start
and path
parameter. These two parameters together define the location of a data item in a product.
The start
parameter determines the offset in the product from which the path
parameter is expanded. It can either be a file handle or a CODA Cursor (see Low level CODA Data Types). When a file handle is passed we start at the root of the product and when it is a cursor we start at the position of the cursor.
The path
argument is actually a series of parameters (which can also be empty). Starting from the start
position, the path
parameters should provide valid fieldnames and array indices to navigate deeper into the product. For example, suppose we have a product that has a measurements
data set with 100 data set records and in each data set record there is a time
field containing a time value of type double. If we want to read the time value in the first data set record (using the file handle filehandle
as start
parameter) we would use: coda.fetch(filehandle, "measurements", 0, "time")
. You can provide each path argument as a separate parameter or combine them together into a single string argument. Alternative calls that have the same result could thus be coda.fetch(filehandle, "measurements[0]", "time")
or coda.fetch(filehandle, "measurements[0]/time")
.
It is also possible to read several data elements at once. We can for instance read the full data set record using coda.fetch(filehandle, "measurements", 0)
or even read the whole product using coda.fetch(filehandle)
. When you read a group of data at once, CODA will create a dynamic data structure in Python (consisting of coda.Record
and numpy.array
objects to represent records and arrays) for the product data that is read.
The types of arguments that you can use in the list of arguments for path
are:
- Array index: You need to provide an array index that has the same number of elements as there are dimensions in the array that you are referring to. So if the array is two dimensional you have to pass indices for both dimensions like
[4,5]
. If the array is one dimensional you can just provide a single index value (without the '[]') to get to the k-th element. You can usecoda.get_size
to check the number of dimensions of an array and the size of each dimension. - Field name: To go to a certain field inside the record that you are pointing to, just provide the field name as a string. You should be aware that some record fields can be dynamically available. In such cases it is better to check in advance (using
coda.get_field_available
) whether the field is available, before traversing it. - Path: You can provide a string containing a path reference, such as
"measurements[0]/time"
. Using paths will also allow you to navigate to attributes by using"@"
as a path component. For instance, '"temperature", "@", "units"
' or"temperature@units"
will point to the units attribute of the temperature data. Note that array indices used in these string paths need to be 0-based indices on the flattened view of an array. This means that if an array is defined as having more than one dimension then the index as used in a path expression should be between 0 and the total number of array elements (exclusive). For example, for a [10,8] array, the index should be >= 0 and <= 79.
Just as the low level functions, the high level CODA Python functions will throw an exception when an error condition occurs. For the high level functions the exception will be of type coda.CodaError
.
coda.open(filename)
This function opens a file and returns a handle to the opened product file.
The high and lowel level coda.open
functions are actually one and the same. You can thus use the product file handle that is returned by coda.open
both as start
parameter in the high level CODA functions mentioned below as well as pf
parameter in the low level CODA functions.
coda.open_as(filename, product_class, product_type, version)
This function will try to open the specified file for reading similar to coda.open
, but instead of trying to automatically recognise the applicable product class/type/version as coda.open
does, this function will impose the format definition that is associated with the given product_class, product_type, and version parameters.
Note that you normally won't need this function as CODA will be able to recognize which format definition to use automatically. However, for the rare occasions where coda.open
is not sufficient, you can use this function to force the use of a specific format definition.
You can specify -1 for the version to request the latest available version of the format definition.
The high and lowel level coda.open_as
functions are one and the same, just as for coda.open
.
coda.close(filehandle)
This function closes the file associated with the file handle filehandle
.
Just as the coda.open
function, the high and lowel level coda.close
functions are one and the same.
coda.get_attributes(start, *path)
Retrieve the attributes of the specified data item.
This function returns a coda.Record
containing the attributes of the specified data item.
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
This function is deprecated. You can replace it by using coda.fetch(start, *path, "@")
.
coda.get_description(start, *path)
Retrieve the description of a field.
This function returns a string containing the description in the CODA product format definition of the specified data element.
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
coda.fetch(start, *path)
Retrieve data from a product file.
Reads the specified data element from the product file. For instance if pf
is a product file handle obtained by calling coda.open()
and the product contains a dataset of records then you can retrieve a time field from the first record using:
>>> value = coda.fetch(pf, "datasetname", 0, "time")
You can also combine the path into a single string parameter:
>>> value = coda.fetch(pf, "datasetname[0]/time")
Which path to provide depends on the format of the product you are trying to access.
Instead of just reading individual values, like strings, integers, doubles, etc. it is also possible to read complete arrays or records of data. For instance, you could read the whole first record of the dataset using:
>>> record = coda.fetch(pf, "datasetname", 0)
This gives you a coda.Record
containing all the record fields.
It is also possible to read an entire product at once by leaving the data specification argument list empty:
>>> product = coda.fetch(pf)
To read attributes, you can pass '@' as path element. For instance, the following command reads the 'units' attribute value from a temperature variable:
>>> unit = coda.fetch(pf, "temperature@units")
For the coda.fetch
function there is an additional feature. If you provide a -1 for one or more of the dimensions of an array you will fetch all elements in the specified dimension(s). For example, with coda.fetch(pf, "datasetname", -1, "dsr_time")
you can fetch all dsr_time
values for all measurements into a single array. Note that passing -1 only works when passing it as an explicit argument (i.e. calling coda.fetch(pf, "dataset[-1]/dsr_time")
, where the -1 index is part of a string argument, will not work).
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
coda.get_field_available(start, *path)
Find out whether a dynamically available record field is available or not.
This function returns True if the record field is available and False if it is not. The last item of the path
argument should point to a record field. An empty path
is considered an error, even if the start argument is a CODA cursor.
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
coda.get_field_count(start, *path)
Retrieve the number of fields in a record.
This function returns the number of fields in the coda.Record
instance that will be returned if coda.fetch()
is called with the same arguments. The last node on the path should reference a record.
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
coda.get_field_names(start, *path)
Retrieve the names of the fields in a record.
This function returns the names of the fields in the coda.Record
instance that will be returned if coda.fetch()
is called with the same arguments. The last node on the path should reference a record.
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
coda.get_size(start, *path)
Retrieve the dimensions of the specified array.
This function returns the dimensions of the array that will be returned if coda.fetch()
is called with the same arguments. Thus, you can check what the dimensions of an array are without having to retrieve the entire array with coda.fetch()
. The last node on the path should reference an array.
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
coda.time_to_string(n_seconds_since_2000)
Convert a number of seconds since 2000-01-01 to a human readable string format. For example:
>>> coda.time_to_string(68260079.0)
would return the string '2002-03-01 01:07:59.000000'
.
It is possible to input a list or tuple of doubles, in which case a list of strings will be returned.
coda.time_to_utcstring(n_seconds_since_2000)
Convert a TAI number of seconds since 2000-01-01 (TAI) to a human readable string format in UTC format. For example:
>>> coda.time_to_utcstring(68260111.0)
would return the string '2002-03-01 01:07:59.000000'
.
It is possible to input a list or tuple of doubles, in which case a list of strings will be returned.
coda.get_unit(start, *path)
Retrieve unit information.
This function returns a string containing the unit information which is stored in the CODA product format definition for the specified data item.
The start
parameter must be a valid CODA file handle that was retrieved with coda.open()
or a valid CODA Cursor. If the start argument is a cursor, then the specified path is traversed starting from the position represented by the cursor. The format of the path
argument is described at the top of this section.
coda.version()
Retrieve CODA version information.
This function returns a string containing the version number of CODA. The version number is always of the format 'x.y.z', i.e., major, minor, and revision numbers, separated by dots.
coda.set_option_filter_record_fields(enable)
Records like for instance a Main Product Header contain fields that have a fixed value (fieldnames like 'PRODUCT=', quote characters, end of line characters, etc.) or are spare fields. If this option is set to 1 then these kinds of fields will be filtered out when retrieving a record from a product file (using e.g. coda.fetch
). If this option is set to 0 then all fields will be returned.
The default value for this option is: 1
This option only effects the higher level CODA Python functions. The lower level functions do not perform filtering on record fields.
coda.get_option_filter_record_fields()
Retrieve the current setting for filtering of record fields.
See also coda.set_option_filter_record_fields(enable)
.
Low level CODA Data Types
Just as in the C interface the coda_product
, coda_type
, and coda_cursor
types are opaque types. This means that you can not print or inspect these types, but can only pass them around.
To create a new CODA Cursor there is a special coda.Cursor
class from which you instantiate new Cursor objects (these objects are opaque wrappers of the underlying cursors in the C domain). You can create a new cursors with: cursor = coda.Cursor()
. After creation you will have to initialize it using the coda.cursor_set_product
function (just like in C). It is possible to create a copy of a CODA Cursor by using a so-called deep copy:
import copy cursor = coda.Cursor() cursor2 = copy.deepcopy(cursor)
Low level CODA Functions
For a description of all low level CODA functions please consult the CODA C interface documentation. There are a few differences between the Python and C interface with respect to certain parameters and error handling. Below you will find an overview of the calling signature for each of the supported low level CODA functions. You'll notice that most differences are rather straightforward (parameters have moved from the parameter list to the list of return values or have been removed). If a change requires more explanation a comment is added to the function definition.
The low level CODA Python functions do not return error codes to indicate succes or failure (as is the case for the C functions). If an error condition occurs, an exception (of type coda.CodacError
) will be thrown. You can catch this exception using e.g.:
try: # call your CODA function(s) here except coda.CodacError, e: # handle CODA-specific exception print "ERROR: %s" % e
If you do not catch the exception, the error message will be printed to the console.
coda.init()
You do not have to call this function yourself to initialize CODA. When CODA is imported in Python the init
function will already be called for you. If, however, you call coda.done
at any time, you can use this function to re-initialize CODA again.
Note that the coda_set_definition_path
function is not provided in the CODA Python interface. You should use the CODA_DEFINITION environment variable to set the definition path as explained in the CODA Definition Path section.
coda.done()
If, for some reason, you want to unload the CODA package, you should first clean up CODA by calling this function. However, unloading a Python package is not a common activity, so you should rarely have to call coda.done()
.
coda.set_option_bypass_special_types(enable)
coda.get_option_bypass_special_types()
coda.set_option_perform_boundary_checks(enable)
coda.get_option_perform_boundary_checks()
coda.set_option_perform_conversions(enable)
coda.get_option_perform_conversions()
coda.set_option_use_fast_size_expressions(enable)
coda.get_option_use_fast_size_expressions()
coda.set_option_use_mmap(enable)
coda.get_option_use_mmap()
coda.NaN()
coda.isNaN(x)
coda.PlusInf()
coda.MinInf()
coda.isInf(x)
coda.isPlusInf(x)
coda.isMinInf(x)
coda.c_index_to_fortran_index(num_dims, dim, index)
coda.match_filefilter(filter, filepaths, callbackfunc)
The callbackfunc
parameter should be a Python function that accepts filepath
, status
and error
as parameters. For example:
>>> def findhelper(filepath, status, error): ... if status == coda.coda_ffs_match: ... print "File %s matches filter!" % filepath ... elif ((status == coda.coda_ffs_unsupported_file) ... or (status == coda.coda_ffs_no_match)): ... # don't print anything if the file does not positively match the filter ... pass ... else: ... print "ERROR: %s (%s)" % (error, filepath) ... return 0 >>> coda.match_filefilter('', '/home/codauser', findhelper)
[YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MUSEC] = coda.time_double_to_parts(datetime)
[YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MUSEC] = coda.time_double_to_parts_utc(datetime)
datetime = coda.time_parts_to_double(YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MUSEC)
datetime = coda.time_parts_to_double_utc(YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MUSEC)
str = coda.time_parts_to_string(YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MUSEC, format)
[YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MUSEC] = coda.time_string_to_parts(format, str)
str = coda.time_double_to_string(datetime, format)
str = coda.time_double_to_string_utc(datetime, format)
datetime = coda.time_string_to_double(format, str)
datetime = coda.time_string_to_double_utc(format, str)
[file_size, format, product_class, product_type, version] = coda.recognize_file(filename)
pf = coda.open(filename)
The product file handle returned by this function can also be used with the high level CODA functions.
pf = coda.open_as(filename, product_class, product_type, version)
coda.close(pf)
filename = coda.get_product_filename(pf)
file_size = coda.get_product_file_size(pf)
format = coda.get_product_format(pf)
product_class = coda.get_product_class(pf)
product_type = coda.get_product_type(pf)
version = coda.get_product_version(pf)
type = coda.get_product_root_type(pf)
backend = coda.get_product_backend(pf)
value = coda.get_product_variable_value(pf, variable, index)
coda.type_get_format_name(type_class)
coda.type_get_class_name(type_class)
coda.type_get_native_type_name(native_type)
coda.type_get_special_type_name(special_type)
has_attributes = coda.type_has_attributes(type)
format = coda.type_get_format(type)
type_class = coda.type_get_class(type)
read_type = coda.type_get_read_type(type)
length = coda.type_get_string_length(type)
bit_size = coda.type_get_bit_size(type)
name = coda.type_get_name(type)
description = coda.type_get_description(type)
unit = coda.type_get_unit(type)
fixed_value = coda.type_get_fixed_value(type)
attributes = coda.type_get_attributes(type)
num_fields = coda.type_get_num_record_fields(type)
index = coda.type_get_record_field_index_from_name(type, name)
index = coda.type_get_record_field_index_from_real_name(type, real_name)
field_type = coda.type_get_record_field_type(type, index)
name = coda.type_get_record_field_name(type, index)
name = coda.type_get_record_field_real_name(type, index)
hidden = coda.type_get_record_field_hidden_status(type, index)
available = coda.type_get_record_field_available_status(type, index)
is_union = coda.type_get_record_union_status(type)
num_dims = coda.type_get_array_num_dims(type)
dim = coda.type_get_array_dim(type)
base_type = coda.type_get_array_base_type(type)
special_type = coda.type_get_special_type(type)
base_type = coda.type_get_special_base_type(type)
coda.cursor_set_product(cursor, product)
You can create a new cursor with cursor = coda.Cursor()
. With coda.cursor_set_product
this cursor can then be initialized to the root of a product. It is also possible to use a cursor as start
parameter in the high level CODA functions.
coda.cursor_goto(cursor, path)
coda.cursor_goto_first_record_field(cursor)
coda.cursor_goto_next_record_field(cursor)
coda.cursor_goto_record_field_by_index(cursor, index)
coda.cursor_goto_record_field_by_name(cursor, name)
coda.cursor_goto_available_union_field(cursor)
coda.cursor_goto_first_array_element(cursor)
coda.cursor_goto_next_array_element(cursor)
coda.cursor_goto_array_element(cursor, subs)
It is not needed to provide the number of dimensions as a parameter (num_subs
) since this value is determined from inspecting the length of subs
.
coda.cursor_goto_array_element_by_index(cursor, index)
coda.cursor_goto_attributes(cursor)
coda.cursor_goto_root(cursor)
coda.cursor_goto_parent(cursor)
coda.cursor_use_base_type_of_special_type(cursor)
has_ascii_content = coda.cursor_has_ascii_content(cursor)
has_attributes = coda.cursor_has_attributes(cursor)
length = coda.cursor_get_string_length(cursor)
bit_size = coda.cursor_get_bit_size(cursor)
byte_size = coda.cursor_get_byte_size(cursor)
num_elements = coda.cursor_get_num_elements(cursor)
pf = coda.cursor_get_product_file(cursor)
depth = coda.cursor_get_depth(cursor)
index = coda.cursor_get_index(cursor)
bit_offset = coda.cursor_get_file_bit_offset(cursor)
byte_offset = coda.cursor_get_file_byte_offset(cursor)
format = coda.cursor_get_format(cursor)
type_class = coda.cursor_get_type_class(cursor)
read_type = coda.cursor_get_read_type(cursor)
special_type = coda.cursor_get_special_type(cursor)
type = coda.cursor_get_type(cursor)
index = coda.cursor_get_record_field_index_from_name(cursor, name)
available = coda.cursor_get_record_field_available_status(cursor, index)
index = coda.cursor_get_available_union_field_index(cursor)
dim = coda.cursor_get_array_dim(cursor)
dst = coda.cursor_read_int8(cursor)
dst = coda.cursor_read_uint8(cursor)
dst = coda.cursor_read_int16(cursor)
dst = coda.cursor_read_uint16(cursor)
dst = coda.cursor_read_int32(cursor)
dst = coda.cursor_read_uint32(cursor)
dst = coda.cursor_read_int64(cursor)
dst = coda.cursor_read_uint64(cursor)
dst = coda.cursor_read_float(cursor)
dst = coda.cursor_read_double(cursor)
dst = coda.cursor_read_char(cursor)
Since Python does not have a native char type the character data will be returned as a string of length 1.
dst = coda.cursor_read_string(cursor)
dst = coda.cursor_read_bits(cursor, bit_offset, bit_length)
dst = coda.cursor_read_bytes(cursor, offset, length)
dst = coda.cursor_read_int8_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_uint8_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_int16_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_uint16_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_int32_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_uint32_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_int64_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_uint64_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_float_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_double_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
dst = coda.cursor_read_char_array(cursor)
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
Since Python does not have a native char type the character array will be returned as an array of signed 8 bit integers.
dst = coda.cursor_read_int8_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_uint8_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_int16_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_uint16_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_int32_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_uint32_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_int64_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_uint64_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_float_partial_array(curso, offset, lengthr)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_double_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
dst = coda.cursor_read_char_partial_array(cursor, offset, length)
CODA will always return the array data in a flat numpy array object using C array ordering.
Since Python does not have a native char type the character array will be returned as an array of signed 8 bit integers.
dst = coda.cursor_read_complex_double_pair()
dst = coda.cursor_read_complex_double_pairs_array()
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.
[dst_re, dst_im] = coda.cursor_read_complex_double_split()
[dst_re, dst_im] = coda.cursor_read_complex_double_split_array()
No array_ordering
parameter is required; CODA will always return the array data in a numpy array object using C array ordering.