Index: deal.ii/examples/step-58/doc/results.dox
===================================================================
--- deal.ii.orig/examples/step-58/doc/results.dox
+++ deal.ii/examples/step-58/doc/results.dox
@@ -111,12 +111,9 @@ bumps into the area where the potential
 outbound from there. Take a look at the video:
 
 @htmlonly
-<p align="center">
-  <iframe width="560" height="315" src="https://www.youtube.com/embed/nraszP3GZHk"
-   frameborder="0"
-   allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
-   allowfullscreen></iframe>
- </p>
+<p>
+<a href="https://www.youtube.com/embed/nraszP3GZHk">(click here)</a>
+</p>
 @endhtmlonly
 
 So why did I end up shading the area where the potential $V(\mathbf x)$ is
Index: deal.ii/examples/step-70/doc/intro.dox
===================================================================
--- deal.ii.orig/examples/step-70/doc/intro.dox
+++ deal.ii/examples/step-70/doc/intro.dox
@@ -505,9 +505,9 @@ Taylor-Couette flow and dye droplets tha
 after the fluid has been displaced in a periodic manner.
 
 @htmlonly
-
-<iframe width="560" height="315" src="https://www.youtube.com/embed/p08_KlTKP50" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
-
+<p>
+<a href="https://www.youtube.com/embed/p08_KlTKP50">(click here)</a>
+</p>
 @endhtmlonly
 
 In the present problem, a very viscous fluid is agitated by the rotation of
Index: deal.ii/examples/step-70/doc/results.dox
===================================================================
--- deal.ii.orig/examples/step-70/doc/results.dox
+++ deal.ii/examples/step-70/doc/results.dox
@@ -332,13 +332,11 @@ Consequently, tracking their motion is r
 
 The following movie shows the evolution of the solution over time:
 
+
 @htmlonly
-<p align="center">
-  <iframe width="560" height="315" src="https://www.youtube.com/embed/y4Gypj2jpXw"
-   frameborder="0"
-   allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
-   allowfullscreen></iframe>
- </p>
+<p>
+<a href="https://www.youtube.com/embed/y4Gypj2jpXw">(click here)</a>
+</p>
 @endhtmlonly
 
 The movie shows the rotating obstacle in gray (actually a
@@ -450,12 +448,9 @@ unimportant as far as run time is concer
 
 
 @htmlonly
-<p align="center">
-  <iframe width="560" height="315" src="https://www.youtube.com/embed/Srwq7zyR9mg"
-   frameborder="0"
-   allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
-   allowfullscreen></iframe>
- </p>
+<p>
+<a href="https://www.youtube.com/embed/Srwq7zyR9mg">(click here)</a>
+</p>
 @endhtmlonly
 
 
