# Copyright (C) 2020-2021 Jørgen S. Dokken
#
# This file is part of DOLFINX_MPC
#
# SPDX-License-Identifier:    MIT
from __future__ import annotations

from mpi4py import MPI
from petsc4py import PETSc

import dolfinx.fem as fem
import numpy as np
import numpy.testing as nt
import pytest
import scipy.sparse.linalg
import ufl
from dolfinx import default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.mesh import create_unit_square, locate_entities_boundary, meshtags

import dolfinx_mpc
import dolfinx_mpc.utils
from dolfinx_mpc.utils import get_assemblers  # noqa: F401


@pytest.mark.parametrize("get_assemblers", ["C++"], indirect=True)
def test_surface_integrals(get_assemblers):  # noqa: F811
    assemble_matrix, assemble_vector = get_assemblers

    N = 4
    mesh = create_unit_square(MPI.COMM_WORLD, N, N)
    V = fem.functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))

    # Fixed Dirichlet BC on the left wall
    def left_wall(x):
        return np.isclose(x[0], 0, atol=100 * np.finfo(x.dtype).resolution)

    fdim = mesh.topology.dim - 1
    left_facets = locate_entities_boundary(mesh, fdim, left_wall)
    bc_dofs = fem.locate_dofs_topological(V, 1, left_facets)
    u_bc = fem.Function(V)
    u_bc.x.array[:] = 0
    bc = fem.dirichletbc(u_bc, bc_dofs)
    bcs = [bc]

    # Traction on top of domain
    def top(x):
        return np.isclose(x[1], 1, atol=100 * np.finfo(x.dtype).resolution)

    top_facets = locate_entities_boundary(mesh, 1, top)
    arg_sort = np.argsort(top_facets)
    mt = meshtags(mesh, fdim, top_facets[arg_sort], np.full(len(top_facets), 3, dtype=np.int32))

    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    g = fem.Constant(mesh, default_scalar_type((0, -9.81e2)))

    # Elasticity parameters
    E = 1.0e2
    nu = 0.0
    mu = fem.Constant(mesh, default_scalar_type(E / (2.0 * (1.0 + nu))))
    lmbda = fem.Constant(mesh, default_scalar_type(E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))))

    # Stress computation
    def sigma(v):
        return 2.0 * mu * ufl.sym(ufl.grad(v)) + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v))

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(sigma(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(fem.Constant(mesh, default_scalar_type((0, 0))), v) * ufl.dx + ufl.inner(g, v) * ds
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(mesh.comm)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Setup multipointconstraint
    def l2b(li):
        return np.array(li, dtype=mesh.geometry.x.dtype).tobytes()

    s_m_c = {}
    for i in range(1, N):
        s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.8}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()

    with Timer("~TEST: Assemble matrix old"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = fem.Function(mpc.function_space)
    uh.x.array[:] = 0
    solver.solve(b, uh.x.petsc_vec)
    uh.x.scatter_forward()
    mpc.backsubstitution(uh)

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    # Generate reference matrices and unconstrained solution
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        # Gather LHS, RHS and solution on one process
        is_complex = np.issubdtype(default_scalar_type, np.complexfloating)  # type: ignore
        scipy_dtype = np.complex128 if is_complex else np.float64
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh.x.petsc_vec, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T.astype(scipy_dtype) * A_csr.astype(scipy_dtype) * K.astype(scipy_dtype)
            reduced_L = K.T.astype(scipy_dtype) @ L_np.astype(scipy_dtype)
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K.astype(scipy_dtype) @ d
            nt.assert_allclose(
                uh_numpy.astype(u_mpc.dtype),
                u_mpc,
                rtol=500 * np.finfo(default_scalar_type).resolution,
            )

    L_org.destroy()
    b.destroy()
    A_org.destroy()
    solver.destroy()
    list_timings(comm, [TimingType.wall])


@pytest.mark.parametrize("get_assemblers", ["C++"], indirect=True)
def test_surface_integral_dependency(get_assemblers):  # noqa: F811
    assemble_matrix, assemble_vector = get_assemblers
    N = 10
    mesh = create_unit_square(MPI.COMM_WORLD, N, N)
    V = fem.functionspace(mesh, ("Lagrange", 1, (mesh.geometry.dim,)))

    def top(x):
        return np.isclose(x[1], 1)

    fdim = mesh.topology.dim - 1
    top_facets = locate_entities_boundary(mesh, fdim, top)

    indices = np.array([], dtype=np.intc)
    values = np.array([], dtype=np.intc)
    markers = {3: top_facets}
    for key in markers.keys():
        indices = np.append(indices, markers[key])
        values = np.append(values, np.full(len(markers[key]), key, dtype=np.intc))
    sort = np.argsort(indices)
    mt = meshtags(
        mesh,
        mesh.topology.dim - 1,
        np.array(indices[sort], dtype=np.intc),
        np.array(values[sort], dtype=np.intc),
    )
    ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt)
    g = fem.Constant(mesh, default_scalar_type((2, 1)))
    h = fem.Constant(mesh, default_scalar_type((3, 2)))
    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    a = ufl.inner(u, v) * ds(3) + ufl.inner(ufl.grad(u), ufl.grad(v)) * ds
    rhs = ufl.inner(g, v) * ds + ufl.inner(h, v) * ds(3)
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Create multipoint constraint and assemble system
    def l2b(li):
        return np.array(li, dtype=mesh.geometry.x.dtype).tobytes()

    s_m_c = {}
    for i in range(1, N):
        s_m_c[l2b([1, i / N])] = {l2b([1, 1]): 0.3}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()
    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc)
    with Timer("~TEST: Assemble vector"):
        b = assemble_vector(linear_form, mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values

    # Generate reference matrices and unconstrained solution
    A_org = fem.petsc.assemble_matrix(bilinear_form)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)
    L_org.destroy()
    b.destroy()
    A_org.destroy()
    A.destroy()
    list_timings(comm, [TimingType.wall])
