# Copyright (C) 2023-2024 Matthew Scroggs and Garth N. Wells
#
# This file is part of Basix (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    MIT
"""Functions to directly wrap Basix elements in UFL."""

import hashlib as _hashlib
import itertools as _itertools
import typing as _typing
from abc import abstractmethod as _abstractmethod
from warnings import warn as _warn

import numpy as np
import numpy.typing as _npt
import ufl as _ufl
from ufl.finiteelement import AbstractFiniteElement as _AbstractFiniteElement
from ufl.pullback import AbstractPullback as _AbstractPullback
from ufl.pullback import IdentityPullback as _IdentityPullback
from ufl.pullback import MixedPullback as _MixedPullback
from ufl.pullback import SymmetricPullback as _SymmetricPullback
from ufl.pullback import UndefinedPullback as _UndefinedPullback

import basix as _basix

__all__ = [
    "element",
    "enriched_element",
    "custom_element",
    "mixed_element",
    "quadrature_element",
    "real_element",
    "blocked_element",
    "wrap_element",
]

_spacemap = {
    _basix.SobolevSpace.L2: _ufl.sobolevspace.L2,
    _basix.SobolevSpace.H1: _ufl.sobolevspace.H1,
    _basix.SobolevSpace.H2: _ufl.sobolevspace.H2,
    _basix.SobolevSpace.HInf: _ufl.sobolevspace.HInf,
    _basix.SobolevSpace.HDiv: _ufl.sobolevspace.HDiv,
    _basix.SobolevSpace.HCurl: _ufl.sobolevspace.HCurl,
    _basix.SobolevSpace.HEin: _ufl.sobolevspace.HEin,
    _basix.SobolevSpace.HDivDiv: _ufl.sobolevspace.HDivDiv,
}

_pullbackmap = {
    _basix.MapType.identity: _ufl.identity_pullback,
    _basix.MapType.L2Piola: _ufl.l2_piola,
    _basix.MapType.contravariantPiola: _ufl.contravariant_piola,
    _basix.MapType.covariantPiola: _ufl.covariant_piola,
    _basix.MapType.doubleContravariantPiola: _ufl.double_contravariant_piola,
    _basix.MapType.doubleCovariantPiola: _ufl.double_covariant_piola,
}


def _ufl_sobolev_space_from_enum(s: _basix.SobolevSpace):
    """Convert a Basix Sobolev space enum to a UFL Sobolev space.

    Args:
        s: The Basix Sobolev space

    Returns:
        UFL Sobolev space
    """
    if s not in _spacemap:
        raise ValueError(f"Could not convert to UFL Sobolev space: {s.name}")
    return _spacemap[s]


def _ufl_pullback_from_enum(m: _basix.MapType) -> _AbstractPullback:
    """Convert an enum to a UFL pull back.

    Args:
        m: A map type.

    Returns:
        UFL pull back.

    """
    if m not in _pullbackmap:
        raise ValueError(f"Could not convert to UFL pull back: {m.name}")
    return _pullbackmap[m]


class _ElementBase(_AbstractFiniteElement):
    """A base wrapper to allow elements to be used with UFL.

    This class includes methods and properties needed by UFL and FFCx.
    This is a base class containing functions common to all the element
    types defined in this file.
    """

    def __init__(
        self,
        repr: str,
        cellname: str,
        reference_value_shape: tuple[int, ...],
        degree: int = -1,
        pullback: _AbstractPullback = _UndefinedPullback(),
    ):
        """Initialise the element."""
        self._repr = repr
        if cellname == "point":
            cellname = "vertex"
        self._cellname = cellname
        self._reference_value_shape = reference_value_shape
        self._degree = degree
        self._pullback = pullback

    # Implementation of methods for UFL AbstractFiniteElement
    def __repr__(self):
        """Format as string for evaluation as Python object."""
        return self._repr

    def __str__(self):
        """Format as string for nice printing."""
        return self._repr

    def __hash__(self) -> int:
        """Return a hash."""
        return hash("basix" + self._repr)

    def basix_hash(self) -> _typing.Optional[int]:
        """Hash of the Basix element (if this is a standard Basix element).

        Returns:
            Hash of the Basix element if this is a Basix element,
            otherwise `None`.
        """
        return None

    @_abstractmethod
    def __eq__(self, other) -> bool:
        """Check if two elements are equal."""

    @property
    def sobolev_space(self):
        """Underlying Sobolev space."""
        return _ufl_sobolev_space_from_enum(self.basix_sobolev_space)

    @property
    def pullback(self) -> _AbstractPullback:
        """Pullback for this element."""
        return self._pullback

    @property
    @_abstractmethod
    def embedded_superdegree(self) -> int:
        """Degree of the minimum degree Lagrange space that spans this element.

        This returns the degree of the lowest degree Lagrange space such
        that the polynomial space of the Lagrange space is a superspace
        of this element's polynomial space. If this element contains
        basis functions that are not in any Lagrange space, this
        function should return None.

        Note that on a simplex cells, the polynomial space of Lagrange
        space is a complete polynomial space, but on other cells this is
        not true. For example, on quadrilateral cells, the degree 1
        Lagrange space includes the degree 2 polynomial xy.
        """

    @property
    @_abstractmethod
    def embedded_subdegree(self) -> int:
        """Degree of the maximum degree Lagrange space that is spanned by this element.

        This returns the degree of the highest degree Lagrange space
        such that the polynomial space of the Lagrange space is a
        subspace of this element's polynomial space. If this element's
        polynomial space does not include the constant function, this
        function should return -1.

        Note that on a simplex cells, the polynomial space of Lagrange
        space is a complete polynomial space, but on other cells this is
        not true. For example, on quadrilateral cells, the degree 1
        Lagrange space includes the degree 2 polynomial xy.
        """

    @property
    def cell(self) -> _ufl.Cell:
        """Cell of the finite element."""
        return _ufl.cell.Cell(self._cellname)

    @property
    def reference_value_shape(self) -> tuple[int, ...]:
        """Shape of the value space on the reference cell."""
        return self._reference_value_shape

    @property
    def sub_elements(self) -> _typing.Sequence[_AbstractFiniteElement]:
        """List of sub elements.

        This function does not recurse: i.e. it does not extract the
        sub-elements of sub-elements.
        """
        return []

    # Basix specific functions
    @_abstractmethod
    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        """Tabulate the basis functions of the element.

        Args:
            nderivs: Number of derivatives to tabulate.
            points: Points to tabulate at

        Returns:
            Tabulated basis functions
        """

    @_abstractmethod
    def get_component_element(self, flat_component: int) -> tuple[_typing.Any, int, int]:
        """Get element that represents a component, and the offset and stride of the component.

        For example, for a mixed element, this will return the
        sub-element that represents the given component, the offset of
        that sub-element, and a stride of 1. For a blocked element, this
        will return the sub-element, an offset equal to the component
        number, and a stride equal to the block size. For vector-valued
        element (eg H(curl) and H(div) elements), this returns a
        component element (and as offset of 0 and a stride of 1). When
        tabulate is called on the component element, only the part of the
        table for the given component is returned.

        Args:
            flat_component: The component

        Returns:
            component element, offset of the component, stride of the component
        """

    @property
    @_abstractmethod
    def dim(self) -> int:
        """Number of DOFs the element has."""

    @property
    @_abstractmethod
    def num_entity_dofs(self) -> list[list[int]]:
        """Number of DOFs associated with each entity."""

    @property
    @_abstractmethod
    def entity_dofs(self) -> list[list[list[int]]]:
        """DOF numbers associated with each entity."""

    @property
    @_abstractmethod
    def num_entity_closure_dofs(self) -> list[list[int]]:
        """Number of DOFs associated with the closure of each entity."""

    @property
    @_abstractmethod
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        """DOF numbers associated with the closure of each entity."""

    @property
    @_abstractmethod
    def num_global_support_dofs(self) -> int:
        """Get the number of global support DOFs."""

    @property
    @_abstractmethod
    def reference_topology(self) -> list[list[list[int]]]:
        """Topology of the reference element."""

    @property
    @_abstractmethod
    def reference_geometry(self) -> _npt.ArrayLike:
        """Geometry of the reference element."""

    @property
    @_abstractmethod
    def family_name(self) -> str:
        """Family name of the element."""

    @property
    @_abstractmethod
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        """Basix element family used to initialise the element."""

    @property
    @_abstractmethod
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        """Basix Lagrange variant used to initialise the element."""

    @property
    @_abstractmethod
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        """Basix DPC variant used to initialise the element."""

    @property
    @_abstractmethod
    def cell_type(self) -> _basix.CellType:
        """Basix cell type used to initialise the element."""

    @property
    @_abstractmethod
    def discontinuous(self) -> bool:
        """True if the discontinuous version of the element is used."""

    @property
    @_abstractmethod
    def map_type(self) -> _basix.MapType:
        """The Basix map type."""

    @property
    @_abstractmethod
    def polyset_type(self) -> _basix.PolysetType:
        """The polyset type of the element."""

    @property
    @_abstractmethod
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        """Return a Basix enum representing the underlying Sobolev space."""

    @property
    @_abstractmethod
    def dtype(self) -> _npt.DTypeLike:
        """Element float type."""

    def get_tensor_product_representation(self):
        """Get the element's tensor product factorisation."""
        return None

    @property
    def degree(self) -> int:
        """The degree of the element."""
        return self._degree

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        """Return custom quadrature rule or raise a ValueError."""
        raise ValueError("Element does not have a custom quadrature rule.")

    @property
    def has_tensor_product_factorisation(self) -> bool:
        """Indicates whether or not this element has a tensor product factorisation.

        If this value is true, this element's basis functions can be
        computed as a tensor product of the basis elements of the
        elements in the factorisation.
        """
        return False

    @property
    def block_size(self) -> int:
        """The block size of the element."""
        return 1

    @property
    def _wcoeffs(self) -> _npt.ArrayLike:
        """The coefficients used to define the polynomial set."""
        raise NotImplementedError()

    @property
    def _x(self) -> list[list[_npt.NDArray]]:
        """The points used to define interpolation."""
        raise NotImplementedError()

    @property
    def _M(self) -> list[list[_npt.NDArray]]:
        """The matrices used to define interpolation."""
        raise NotImplementedError()

    @property
    def interpolation_nderivs(self) -> int:
        """The number of derivatives needed when interpolating."""
        raise NotImplementedError()

    @property
    def is_custom_element(self) -> bool:
        """True if the element is a custom Basix element."""
        return False

    @property
    def has_custom_quadrature(self) -> bool:
        """True if the element has a custom quadrature rule."""
        return False

    @property
    def basix_element(self):
        """Underlying Basix element."""
        raise NotImplementedError()

    @property
    def is_quadrature(self) -> bool:
        """Is this a quadrature element?"""
        return False

    @property
    def is_mixed(self) -> bool:
        """Is this a mixed element?"""
        return False

    @property
    def is_symmetric(self) -> bool:
        """Is the element a symmetric 2-tensor?"""
        return False


class _BasixElement(_ElementBase):
    """A wrapper allowing Basix elements to be used directly with UFL.

    This class allows elements created with `basix.create_element` to be
    wrapped as UFL compatible elements. Users should not directly call
    this class's initialiser, but should use the `element` function
    instead.
    """

    _element: _basix.finite_element.FiniteElement

    def __init__(self, element: _basix.finite_element.FiniteElement):
        """Create a Basix element."""
        if element.family == _basix.ElementFamily.custom:
            self._is_custom = True
            repr = f"custom Basix element ({_compute_signature(element)})"
        else:
            self._is_custom = False
            repr = (
                f"Basix element ({element.family.name}, {element.cell_type.name}, "
                f"{element.degree}, "
                f"{element.lagrange_variant.name}, {element.dpc_variant.name}, "
                f"{element.discontinuous}, "
                f"{element.dtype}, {element.dof_ordering})"
            )

        super().__init__(
            repr,
            element.cell_type.name,
            tuple(element.value_shape),
            element.degree,
            _ufl_pullback_from_enum(element.map_type),
        )

        self._element = element

    def __eq__(self, other) -> bool:
        return isinstance(other, _BasixElement) and self._element == other._element

    def __hash__(self) -> int:
        return super().__hash__()

    def basix_hash(self) -> _typing.Optional[int]:
        return self._element.hash()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        tab = self._element.tabulate(nderivs, points)
        # TODO: update FFCx to remove the need for transposing here
        return tab.transpose((0, 1, 3, 2)).reshape((tab.shape[0], tab.shape[1], -1))  # type: ignore

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        assert flat_component < self.reference_value_size
        return _ComponentElement(self, flat_component), 0, 1

    def get_tensor_product_representation(self):
        if not self.has_tensor_product_factorisation:
            return None
        return self._element.get_tensor_product_representation()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._element.dtype

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return self._element.sobolev_space

    @property
    def dim(self) -> int:
        return self._element.dim

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        return self._element.num_entity_dofs

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        return self._element.entity_dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return self._element.num_entity_closure_dofs

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        return self._element.entity_closure_dofs

    @property
    def num_global_support_dofs(self) -> int:
        return 0

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        return _basix.topology(self._element.cell_type)

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        return _basix.geometry(self._element.cell_type)

    @property
    def family_name(self) -> str:
        return self._element.family.name

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return self._element.family

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return self._element.lagrange_variant

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return self._element.dpc_variant

    @property
    def cell_type(self) -> _basix.CellType:
        return self._element.cell_type

    @property
    def discontinuous(self) -> bool:
        return self._element.discontinuous

    @property
    def interpolation_nderivs(self) -> int:
        return self._element.interpolation_nderivs

    @property
    def is_custom_element(self) -> bool:
        return self._is_custom

    @property
    def map_type(self) -> _basix.MapType:
        return self._element.map_type

    @property
    def embedded_superdegree(self) -> int:
        return self._element.embedded_superdegree

    @property
    def embedded_subdegree(self) -> int:
        return self._element.embedded_subdegree

    @property
    def polyset_type(self) -> _basix.PolysetType:
        return self._element.polyset_type

    @property
    def _wcoeffs(self) -> _npt.ArrayLike:
        return self._element.wcoeffs

    @property
    def _x(self) -> list[list[_npt.NDArray]]:
        return self._element.x

    @property
    def _M(self) -> list[list[_npt.NDArray]]:
        return self._element.M

    @property
    def has_tensor_product_factorisation(self) -> bool:
        return self._element.has_tensor_product_factorisation

    @property
    def basix_element(self):
        return self._element


class _ComponentElement(_ElementBase):
    """An element representing one component of a _BasixElement.

    This element type is used when UFL's ``get_component_element``
    function is called.

    """

    _element: _ElementBase
    _component: int

    def __init__(self, element: _ElementBase, component: int):
        """Initialise the element."""
        self._element = element
        self._component = component
        repr = f"component element ({element!r}, {component}"
        repr += ")"
        super().__init__(repr, element.cell_type.name, (1,), element._degree)

    def __eq__(self, other) -> bool:
        return (
            isinstance(other, _ComponentElement)
            and self._element == other._element
            and self._component == other._component
        )

    def __hash__(self) -> int:
        return super().__hash__()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        tables = self._element.tabulate(nderivs, points)
        output = []
        for tbl in tables:  # type: ignore
            shape = (points.shape[0], *self._element._reference_value_shape, -1)
            tbl = tbl.reshape(shape)  # type: ignore
            if len(self._element._reference_value_shape) == 0:
                output.append(tbl)
            elif len(self._element._reference_value_shape) == 1:
                output.append(tbl[:, self._component, :])
            elif len(self._element._reference_value_shape) == 2:
                if isinstance(self._element, _BlockedElement) and self._element._has_symmetry:
                    # FIXME: check that this behaves as expected
                    output.append(tbl[:, self._component, :])
                else:
                    vs0 = self._element._reference_value_shape[0]
                    output.append(tbl[:, self._component // vs0, self._component % vs0, :])
            else:
                raise NotImplementedError()
        return np.asarray(output, dtype=np.float64)

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        if flat_component == 0:
            return self, 0, 1
        else:
            raise NotImplementedError()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._element.dtype

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return self._element.basix_sobolev_space

    @property
    def dim(self) -> int:
        raise NotImplementedError()

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        raise NotImplementedError()

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        raise NotImplementedError()

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def num_global_support_dofs(self) -> int:
        raise NotImplementedError()

    @property
    def family_name(self) -> str:
        raise NotImplementedError()

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        raise NotImplementedError()

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return self._element.element_family

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return self._element.lagrange_variant

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return self._element.dpc_variant

    @property
    def cell_type(self) -> _basix.CellType:
        return self._element.cell_type

    @property
    def polyset_type(self) -> _basix.PolysetType:
        return self._element.polyset_type

    @property
    def discontinuous(self) -> bool:
        return self._element.discontinuous

    @property
    def interpolation_nderivs(self) -> int:
        return self._element.interpolation_nderivs

    @property
    def map_type(self) -> _basix.MapType:
        raise NotImplementedError()

    @property
    def embedded_superdegree(self) -> int:
        return self._element.embedded_superdegree

    @property
    def embedded_subdegree(self) -> int:
        return self._element.embedded_subdegree

    @property
    def basix_element(self):
        return self._element


class _MixedElement(_ElementBase):
    """A mixed element that combines two or more elements.

    This can be used when multiple different elements appear in a form.
    Users should not directly call this class's initilizer, but should
    use the :func:`mixed_element` function instead.
    """

    _sub_elements: list[_ElementBase]

    def __init__(self, sub_elements: list[_ElementBase]):
        """Initialise the element."""
        assert len(sub_elements) > 0
        self._sub_elements = sub_elements
        pullback = (
            _ufl.identity_pullback
            if all(isinstance(e.pullback, _IdentityPullback) for e in sub_elements)
            else _MixedPullback(self)
        )

        repr = "mixed element (" + ", ".join(i._repr for i in sub_elements) + ")"
        super().__init__(
            repr,
            sub_elements[0].cell_type.name,
            (sum(i.reference_value_size for i in sub_elements),),
            pullback=pullback,
        )

    def __eq__(self, other) -> bool:
        if isinstance(other, _MixedElement) and len(self._sub_elements) == len(other._sub_elements):
            for i, j in zip(self._sub_elements, other._sub_elements):
                if i != j:
                    return False
            return True
        return False

    def __hash__(self) -> int:
        return super().__hash__()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._sub_elements[0].dtype

    @property
    def is_mixed(self) -> bool:
        return True

    @property
    def degree(self) -> int:
        return max((e.degree for e in self._sub_elements), default=-1)

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        tables = []
        results = [e.tabulate(nderivs, points) for e in self._sub_elements]
        for deriv_tables in zip(*results):
            new_table = np.zeros((len(points), self.reference_value_size * self.dim))
            start = 0
            for e, t in zip(self._sub_elements, deriv_tables):
                for i in range(0, e.dim, e.reference_value_size):
                    new_table[:, start : start + e.reference_value_size] = t[
                        :, i : i + e.reference_value_size
                    ]
                    start += self.reference_value_size
            tables.append(new_table)
        return np.asarray(tables, dtype=np.float64)

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        sub_dims = [0] + [e.dim for e in self._sub_elements]
        sub_cmps = [0] + [e.reference_value_size for e in self._sub_elements]

        irange = np.cumsum(sub_dims)
        crange = np.cumsum(sub_cmps)

        # Find index of sub element which corresponds to the current
        # flat component
        component_element_index = np.where(crange <= flat_component)[0].shape[0] - 1

        sub_e = self._sub_elements[component_element_index]

        e, offset, stride = sub_e.get_component_element(
            flat_component - crange[component_element_index]
        )
        # TODO: is this offset correct?
        return e, irange[component_element_index] + offset, stride

    @property
    def embedded_superdegree(self) -> int:
        return max(e.embedded_superdegree for e in self._sub_elements)

    @property
    def embedded_subdegree(self) -> int:
        raise NotImplementedError()

    @property
    def map_type(self) -> _basix.MapType:
        raise NotImplementedError()

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return _basix.sobolev_spaces.intersection(
            [e.basix_sobolev_space for e in self._sub_elements]
        )

    @property
    def sub_elements(self) -> _typing.Sequence[_ElementBase]:
        return self._sub_elements

    @property
    def dim(self) -> int:
        return sum(e.dim for e in self._sub_elements)

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        data = [e.num_entity_dofs for e in self._sub_elements]
        return [
            [sum(d[tdim][entity_n] for d in data) for entity_n, _ in enumerate(entities)]
            for tdim, entities in enumerate(data[0])
        ]

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        dofs: list[list[list[int]]] = [
            [[] for i in entities] for entities in self._sub_elements[0].entity_dofs
        ]
        start_dof = 0
        for e in self._sub_elements:
            for tdim, entities in enumerate(e.entity_dofs):
                for entity_n, entity_dofs in enumerate(entities):
                    dofs[tdim][entity_n] += [start_dof + i for i in entity_dofs]
            start_dof += e.dim
        return dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        data = [e.num_entity_closure_dofs for e in self._sub_elements]
        return [
            [sum(d[tdim][entity_n] for d in data) for entity_n, _ in enumerate(entities)]
            for tdim, entities in enumerate(data[0])
        ]

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        dofs: list[list[list[int]]] = [
            [[] for i in entities] for entities in self._sub_elements[0].entity_closure_dofs
        ]
        start_dof = 0
        for e in self._sub_elements:
            for tdim, entities in enumerate(e.entity_closure_dofs):
                for entity_n, entity_dofs in enumerate(entities):
                    dofs[tdim][entity_n] += [start_dof + i for i in entity_dofs]
            start_dof += e.dim
        return dofs

    @property
    def num_global_support_dofs(self) -> int:
        return sum(e.num_global_support_dofs for e in self._sub_elements)

    @property
    def family_name(self) -> str:
        return "mixed element"

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        return self._sub_elements[0].reference_topology

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        return self._sub_elements[0].reference_geometry

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return None

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return None

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return None

    @property
    def cell_type(self) -> _basix.CellType:
        return self._sub_elements[0].cell_type

    @property
    def discontinuous(self) -> bool:
        return False

    @property
    def interpolation_nderivs(self) -> int:
        return max([e.interpolation_nderivs for e in self._sub_elements])

    @property
    def polyset_type(self) -> _basix.PolysetType:
        pt = _basix.PolysetType.standard
        for e in self._sub_elements:
            pt = _basix.polyset_superset(self.cell_type, pt, e.polyset_type)
        return pt

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        custom_q = None
        for e in self._sub_elements:
            if e.has_custom_quadrature:
                if custom_q is None:
                    custom_q = e.custom_quadrature()
                else:
                    p, w = e.custom_quadrature()
                    if not np.allclose(p, custom_q[0]) or not np.allclose(w, custom_q[1]):
                        raise ValueError(
                            "Subelements of mixed element use different quadrature rules"
                        )
        if custom_q is not None:
            return custom_q
        raise ValueError("Element does not have custom quadrature")

    @property
    def has_custom_quadrature(self) -> bool:
        for e in self._sub_elements:
            if e.has_custom_quadrature:
                return True
        return False


class _BlockedElement(_ElementBase):
    """Element with a block size that contains multiple copies of a sub element.

    This can be used to (for example) create vector and tensor Lagrange
    elements. Users should not directly call this classes initilizer,
    but should use the `blocked_element` function instead.

    """

    _block_shape: tuple[int, ...]
    _sub_element: _ElementBase
    _block_size: int
    _has_symmetry: bool

    def __init__(
        self,
        sub_element: _ElementBase,
        shape: tuple[int, ...],
        symmetry: _typing.Optional[bool] = None,
    ):
        """Initialise the element."""
        if sub_element.reference_value_size != 1:
            raise ValueError(
                "Blocked elements of non-scalar elements are not supported. "
                "Try using _MixedElement instead."
            )
        if symmetry is not None:
            if len(shape) != 2:
                raise ValueError("symmetry argument can only be passed to elements of rank 2.")
            if shape[0] != shape[1]:
                raise ValueError("symmetry argument can only be passed to square shaped elements.")

        if symmetry:
            block_size = shape[0] * (shape[0] + 1) // 2
            self._has_symmetry = True
        else:
            block_size = 1
            for i in shape:
                block_size *= i
            self._has_symmetry = False
        assert block_size > 0

        self._sub_element = sub_element
        self._block_size = block_size
        self._block_shape = shape

        repr = f"blocked element ({sub_element!r}, {shape}"
        if symmetry is not None:
            repr += f", symmetry={symmetry}"
        repr += ")"

        super().__init__(
            repr,
            sub_element.cell_type.name,
            shape,
            sub_element._degree,
            sub_element._pullback,
        )

        if symmetry:
            n = 0
            symmetry_mapping: dict[tuple[int, ...], int] = {}
            for i in range(shape[0]):
                for j in range(i + 1):
                    symmetry_mapping[(i, j)] = n
                    symmetry_mapping[(j, i)] = n
                    n += 1

            self._pullback = _SymmetricPullback(self, symmetry_mapping)

    def __eq__(self, other) -> bool:
        return (
            isinstance(other, _BlockedElement)
            and self._block_size == other._block_size
            and self._block_shape == other._block_shape
            and self._sub_element == other._sub_element
        )

    def __hash__(self) -> int:
        return super().__hash__()

    def basix_hash(self) -> _typing.Optional[int]:
        return self._sub_element.basix_hash()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._sub_element.dtype

    @property
    def is_symmetric(self) -> bool:
        return self._has_symmetry

    @property
    def is_quadrature(self) -> bool:
        return self._sub_element.is_quadrature

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        assert len(self._block_shape) == 1  # TODO: block shape
        assert self.reference_value_size == self._block_size  # TODO: remove this assumption
        output = []
        for table in self._sub_element.tabulate(nderivs, points):  # type: ignore
            # Repeat sub element horizontally
            assert len(table.shape) == 2  # type: ignore
            new_table = np.zeros(
                (table.shape[0], *self._block_shape, self._block_size * table.shape[1])  # type: ignore
            )
            for i, j in enumerate(_itertools.product(*[range(s) for s in self._block_shape])):
                if len(j) == 1:
                    new_table[:, j[0], i :: self._block_size] = table
                elif len(j) == 2:
                    new_table[:, j[0], j[1], i :: self._block_size] = table
                else:
                    raise NotImplementedError()
            output.append(new_table)
        return np.asarray(output, dtype=np.float64)

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        return self._sub_element, flat_component, self._block_size

    def get_tensor_product_representation(self):
        if not self.has_tensor_product_factorisation:
            return None
        return self._sub_element.get_tensor_product_representation()

    @property
    def block_size(self) -> int:
        return self._block_size

    @property
    def reference_value_shape(self) -> tuple[int, ...]:
        return self._reference_value_shape

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return self._sub_element.basix_sobolev_space

    @property
    def sub_elements(self) -> list[_AbstractFiniteElement]:
        return [self._sub_element for _ in range(self._block_size)]

    @property
    def dim(self) -> int:
        return self._sub_element.dim * self._block_size

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        return [[j * self._block_size for j in i] for i in self._sub_element.num_entity_dofs]

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        # TODO: should this return this, or should it take blocks into
        # account?
        return [
            [[k * self._block_size + b for k in j for b in range(self._block_size)] for j in i]
            for i in self._sub_element.entity_dofs
        ]

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return [
            [j * self._block_size for j in i] for i in self._sub_element.num_entity_closure_dofs
        ]

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        # TODO: should this return this, or should it take blocks into
        # account?
        return [
            [[k * self._block_size + b for k in j for b in range(self._block_size)] for j in i]
            for i in self._sub_element.entity_closure_dofs
        ]

    @property
    def num_global_support_dofs(self) -> int:
        return self._sub_element.num_global_support_dofs * self._block_size

    @property
    def family_name(self) -> str:
        return self._sub_element.family_name

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        return self._sub_element.reference_topology

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        return self._sub_element.reference_geometry

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return self._sub_element.lagrange_variant

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return self._sub_element.dpc_variant

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return self._sub_element.element_family

    @property
    def cell_type(self) -> _basix.CellType:
        return self._sub_element.cell_type

    @property
    def discontinuous(self) -> bool:
        return self._sub_element.discontinuous

    @property
    def interpolation_nderivs(self) -> int:
        return self._sub_element.interpolation_nderivs

    @property
    def map_type(self) -> _basix.MapType:
        return self._sub_element.map_type

    @property
    def embedded_superdegree(self) -> int:
        return self._sub_element.embedded_superdegree

    @property
    def embedded_subdegree(self) -> int:
        return self._sub_element.embedded_subdegree

    @property
    def polyset_type(self) -> _basix.PolysetType:
        return self._sub_element.polyset_type

    @property
    def _wcoeffs(self) -> _npt.ArrayLike:
        sub_wc = self._sub_element._wcoeffs
        wcoeffs = np.zeros((sub_wc.shape[0] * self._block_size, sub_wc.shape[1] * self._block_size))  # type: ignore
        for i in range(self._block_size):
            wcoeffs[
                sub_wc.shape[0] * i : sub_wc.shape[0] * (i + 1),  # type: ignore
                sub_wc.shape[1] * i : sub_wc.shape[1] * (i + 1),  # type: ignore
            ] = sub_wc
        return wcoeffs

    @property
    def _x(self) -> list[list[_npt.NDArray]]:
        return self._sub_element._x

    @property
    def _M(self) -> list[list[_npt.NDArray]]:
        M = []
        for M_list in self._sub_element._M:
            M_row = []
            for mat in M_list:
                new_mat = np.zeros(
                    (
                        mat.shape[0] * self._block_size,  # type: ignore
                        mat.shape[1] * self._block_size,  # type: ignore
                        mat.shape[2],  # type: ignore
                        mat.shape[3],  # type: ignore
                    )
                )
                for i in range(self._block_size):
                    new_mat[
                        i * mat.shape[0] : (i + 1) * mat.shape[0],  # type: ignore
                        i * mat.shape[1] : (i + 1) * mat.shape[1],  # type: ignore
                        :,
                        :,
                    ] = mat
                M_row.append(new_mat)
            M.append(M_row)
        return M  # type: ignore

    @property
    def has_tensor_product_factorisation(self) -> bool:
        return self._sub_element.has_tensor_product_factorisation

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        return self._sub_element.custom_quadrature()

    @property
    def has_custom_quadrature(self) -> bool:
        return self._sub_element.has_custom_quadrature

    @property
    def basix_element(self):
        return self._sub_element.basix_element


class _QuadratureElement(_ElementBase):
    """A quadrature element."""

    def __init__(
        self,
        cell: _basix.CellType,
        points: _npt.NDArray[np.floating],
        weights: _npt.NDArray[np.floating],
        pullback: _AbstractPullback,
        degree: _typing.Optional[int] = None,
        dtype: _typing.Optional[_npt.DTypeLike] = np.float64,
    ):
        """Initialise the element."""
        self._points = points.astype(dtype)
        self._weights = weights.astype(dtype)
        repr = f"QuadratureElement({cell.name}, {points!r}, {weights!r}, {pullback})".replace(
            "\n", ""
        )
        self._cell_type = cell
        self._entity_counts = [len(i) for i in _basix.topology(cell)]

        if degree is None:
            degree = len(points)

        super().__init__(repr, cell.name, (), degree, pullback=pullback)

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._points.dtype

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return _basix.SobolevSpace.L2

    def __eq__(self, other) -> bool:
        return isinstance(other, _QuadratureElement) and (
            self._cell_type == other._cell_type
            and self._pullback == other._pullback
            and self._points.shape == other._points.shape
            and self._weights.shape == other._weights.shape
            and np.allclose(self._points, other._points)
            and np.allclose(self._weights, other._weights)
        )

    def __hash__(self) -> int:
        return super().__hash__()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        if nderivs > 0:
            raise ValueError("Cannot take derivatives of Quadrature element.")

        if points.shape != self._points.shape:
            raise ValueError("Mismatch of tabulation points and element points.")
        tables = np.asarray([np.eye(points.shape[0], points.shape[0])], dtype=points.dtype)
        return tables

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        return self, 0, 1

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        return self._points, self._weights

    @property
    def is_quadrature(self) -> bool:
        return True

    @property
    def dim(self) -> int:
        return self._points.shape[0]

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        dofs = []
        for d in self._entity_counts[:-1]:
            dofs += [[0] * d]

        dofs += [[self.dim]]
        return dofs

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        start_dof = 0
        entity_dofs = []
        for i in self.num_entity_dofs:
            dofs_list = []
            for j in i:
                dofs_list.append([start_dof + k for k in range(j)])
                start_dof += j
            entity_dofs.append(dofs_list)
        return entity_dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return self.num_entity_dofs

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        return self.entity_dofs

    @property
    def num_global_support_dofs(self) -> int:
        return 0

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        raise NotImplementedError()

    @property
    def family_name(self) -> str:
        return "quadrature"

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return None

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return None

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return None

    @property
    def cell_type(self) -> _basix.CellType:
        return self._cell_type

    @property
    def discontinuous(self) -> bool:
        return False

    @property
    def map_type(self) -> _basix.MapType:
        return _basix.MapType.identity

    @property
    def polyset_type(self) -> _basix.PolysetType:
        raise NotImplementedError()

    @property
    def has_custom_quadrature(self) -> bool:
        return True

    @property
    def embedded_superdegree(self) -> int:
        return self.degree

    @property
    def embedded_subdegree(self) -> int:
        return -1


class _RealElement(_ElementBase):
    """A real element."""

    def __init__(self, cell: _basix.CellType, value_shape: tuple[int, ...]):
        """Initialise the element."""
        self._cell_type = cell
        tdim = len(_basix.topology(cell)) - 1

        super().__init__(f"RealElement({cell.name}, {value_shape})", cell.name, value_shape, 0)

        self._entity_counts = []
        if tdim >= 1:
            self._entity_counts.append(self.cell.num_vertices())
        if tdim >= 2:
            self._entity_counts.append(self.cell.num_edges())
        if tdim >= 3:
            self._entity_counts.append(self.cell.num_facets())
        self._entity_counts.append(1)

    def __eq__(self, other) -> bool:
        return (
            isinstance(other, _RealElement)
            and self._cell_type == other._cell_type
            and self._reference_value_shape == other._reference_value_shape
        )

    def __hash__(self) -> int:
        return super().__hash__()

    @property
    def dtype(self) -> _npt.DTypeLike:
        raise NotImplementedError()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        out = np.zeros((nderivs + 1, len(points), self.reference_value_size**2))
        for v in range(self.reference_value_size):
            out[0, :, self.reference_value_size * v + v] = 1.0
        return out

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        assert flat_component < self.reference_value_size
        return self, 0, 1

    @property
    def dim(self) -> int:
        return 0

    @property
    def embedded_superdegree(self) -> int:
        return 0

    @property
    def embedded_subdegree(self) -> int:
        return 0

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        dofs = []
        for d in self._entity_counts[:-1]:
            dofs += [[0] * d]

        dofs += [[self.dim]]
        return dofs

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        start_dof = 0
        entity_dofs = []
        for i in self.num_entity_dofs:
            dofs_list = []
            for j in i:
                dofs_list.append([start_dof + k for k in range(j)])
                start_dof += j
            entity_dofs.append(dofs_list)
        return entity_dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return self.num_entity_dofs

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        return self.entity_dofs

    @property
    def num_global_support_dofs(self) -> int:
        return 1

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        raise NotImplementedError()

    @property
    def family_name(self) -> str:
        return "real"

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return None

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return None

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return None

    @property
    def cell_type(self) -> _basix.CellType:
        return self._cell_type

    @property
    def discontinuous(self) -> bool:
        return False

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return _basix.SobolevSpace.HInf

    @property
    def map_type(self) -> _basix.MapType:
        return _basix.MapType.identity

    @property
    def polyset_type(self) -> _basix.PolysetType:
        raise NotImplementedError()


def _compute_signature(element: _basix.finite_element.FiniteElement) -> str:
    """Compute a signature of a custom element.

    Args:
        element: A Basix custom element.

    Returns:
        A hash identifying this element.
    """
    assert element.family == _basix.ElementFamily.custom
    signature = (
        f"{element.cell_type.name}, {element.value_shape}, {element.map_type.name}, "
        f"{element.discontinuous}, {element.embedded_subdegree}, {element.embedded_superdegree}, "
        f"{element.dtype}, {element.dof_ordering}"
    )
    data = ",".join([f"{i}" for row in element.wcoeffs for i in row])  # type: ignore
    data += "__"
    for entity in element.x:
        for points in entity:
            data += ",".join([f"{i}" for p in points for i in p])  # type: ignore
            data += "_"
    data += "__"

    for entity in element.M:
        for matrices in entity:
            data += ",".join([f"{i}" for mat in matrices for row in mat for i in row])  # type: ignore
            data += "_"
    data += "__"

    for mat in element.entity_transformations().values():
        data += ",".join([f"{i}" for row in mat for i in row])
        data += "__"
    signature += _hashlib.sha1(data.encode("utf-8")).hexdigest()

    return signature


def element(
    family: _typing.Union[_basix.ElementFamily, str],
    cell: _typing.Union[_basix.CellType, str],
    degree: int,
    lagrange_variant: _basix.LagrangeVariant = _basix.LagrangeVariant.unset,
    dpc_variant: _basix.DPCVariant = _basix.DPCVariant.unset,
    discontinuous: bool = False,
    shape: _typing.Optional[tuple[int, ...]] = None,
    symmetry: _typing.Optional[bool] = None,
    dof_ordering: _typing.Optional[list[int]] = None,
    dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
    """Create a UFL compatible element using Basix.

    Args:
        family: Element family/type.
        cell: Element cell type.
        degree: Degree of the finite element.
        lagrange_variant: Variant of Lagrange to be used.
        dpc_variant: Variant of DPC to be used.
        discontinuous: If ``True``, the discontinuous version of the
            element is created.
        shape: Value shape of the element. For scalar-valued families,
            this can be used to create vector and tensor elements.
        symmetry: Set to ``True`` if the tensor is symmetric. Valid for
            rank 2 elements only.
        dof_ordering: Ordering of dofs for ``ElementDofLayout``.
        dtype: Floating point data type.

    Returns:
        A finite element.

    """
    # Conversion of string arguments to types
    if isinstance(cell, str):
        cell = _basix.CellType[cell]
    if isinstance(family, str):
        if family.startswith("Discontinuous "):
            family = family[14:]
            discontinuous = True
        if family in ["DP", "DG", "DQ"]:
            family = "P"
            discontinuous = True
        if family == "CG":
            _warn(
                '"CG" element name is deprecated. Consider using "Lagrange" or "P" instead',
                DeprecationWarning,
                stacklevel=2,
            )
            family = "P"
            discontinuous = False
        if family == "DPC":
            discontinuous = True

        family = _basix.finite_element.string_to_family(family, cell.name)

    # Default variant choices
    EF = _basix.ElementFamily
    if lagrange_variant == _basix.LagrangeVariant.unset:
        if family == EF.P:
            lagrange_variant = _basix.LagrangeVariant.gll_warped
        elif family in [EF.RT, EF.N1E]:
            lagrange_variant = _basix.LagrangeVariant.legendre
        elif family in [EF.serendipity, EF.BDM, EF.N2E]:
            lagrange_variant = _basix.LagrangeVariant.legendre

    if dpc_variant == _basix.DPCVariant.unset:
        if family in [EF.serendipity, EF.BDM, EF.N2E]:
            dpc_variant = _basix.DPCVariant.legendre
        elif family == EF.DPC:
            dpc_variant = _basix.DPCVariant.diagonal_gll

    e = _basix.create_element(
        family,
        cell,
        degree,
        lagrange_variant,
        dpc_variant,
        discontinuous,
        dof_ordering=dof_ordering,
        dtype=dtype,
    )
    ufl_e = _BasixElement(e)

    if shape is None or shape == tuple(e.value_shape):
        if symmetry is not None:
            raise ValueError("Cannot pass a symmetry argument to this element.")
        return ufl_e
    else:
        return blocked_element(ufl_e, shape=shape, symmetry=symmetry)


def enriched_element(
    elements: list[_ElementBase],
    map_type: _typing.Optional[_basix.MapType] = None,
) -> _ElementBase:
    """Create an UFL compatible enriched element from a list of elements.

    Args:
        elements: The list of elements
        map_type: The map type for the enriched element.

    Returns:
        An enriched finite element.

    """
    ct = elements[0].cell_type
    ptype = elements[0].polyset_type
    vshape = elements[0].reference_value_shape
    vsize = elements[0].reference_value_size
    if map_type is None:
        map_type = elements[0].map_type
        for e in elements:
            if e.map_type != map_type:
                raise ValueError("Enriched elements on different map types not supported.")

    dtype = e.dtype
    hcd = min(e.embedded_subdegree for e in elements)
    hd = max(e.embedded_superdegree for e in elements)
    ss = _basix.sobolev_spaces.intersection([e.basix_sobolev_space for e in elements])
    discontinuous = True
    for e in elements:
        if not e.discontinuous:
            discontinuous = False
        if e.cell_type != ct:
            raise ValueError("Enriched elements on different cell types not supported.")
        if e.polyset_type != ptype:
            raise ValueError("Enriched elements on different polyset types not supported.")
        if e.reference_value_shape != vshape or e.reference_value_size != vsize:
            raise ValueError("Enriched elements on different value shapes not supported.")
        if e.dtype != dtype:
            raise ValueError("Enriched elements with different dtypes no supported.")
    nderivs = max(e.interpolation_nderivs for e in elements)

    x = []
    for pts_lists in zip(*[e._x for e in elements]):
        x.append([np.concatenate(pts) for pts in zip(*pts_lists)])
    M = []
    for M_lists in zip(*[e._M for e in elements]):
        M_row = []
        for M_parts in zip(*M_lists):
            ndofs = sum(mat.shape[0] for mat in M_parts)
            npts = sum(mat.shape[2] for mat in M_parts)
            deriv_dim = max(mat.shape[3] for mat in M_parts)
            new_M = np.zeros((ndofs, vsize, npts, deriv_dim))
            pt = 0
            dof = 0
            for mat in M_parts:
                new_M[dof : dof + mat.shape[0], :, pt : pt + mat.shape[2], : mat.shape[3]] = mat
                dof += mat.shape[0]
                pt += mat.shape[2]
            M_row.append(new_M)
        M.append(M_row)

    dim = sum(e.dim for e in elements)
    wcoeffs = np.zeros(
        (dim, _basix.polynomials.dim(_basix.PolynomialType.legendre, ct, hd) * vsize)
    )
    row = 0
    for e in elements:
        wcoeffs[row : row + e.dim, :] = _basix.polynomials.reshape_coefficients(
            _basix.PolynomialType.legendre,
            ct,
            e._wcoeffs,  # type: ignore
            vsize,
            e.embedded_superdegree,
            hd,
        )
        row += e.dim

    return custom_element(
        ct,
        list(vshape),
        wcoeffs,
        x,
        M,
        nderivs,
        map_type,
        ss,
        discontinuous,
        hcd,
        hd,
        ptype,
        dtype=dtype,
    )


def custom_element(
    cell_type: _basix.CellType,
    reference_value_shape: _typing.Union[list[int], tuple[int, ...]],
    wcoeffs: _npt.NDArray[np.floating],
    x: list[list[_npt.NDArray[np.floating]]],
    M: list[list[_npt.NDArray[np.floating]]],
    interpolation_nderivs: int,
    map_type: _basix.MapType,
    sobolev_space: _basix.SobolevSpace,
    discontinuous: bool,
    embedded_subdegree: int,
    embedded_superdegree: int,
    polyset_type: _basix.PolysetType = _basix.PolysetType.standard,
    dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
    """Create a UFL compatible custom Basix element.

    Args:
        cell_type: The cell type
        reference_value_shape: The reference value shape of the element
        wcoeffs: Matrices for the kth value index containing the
            expansion coefficients defining a polynomial basis spanning
            the polynomial space for this element. Shape is
            ``(dim(finite element polyset), dim(Legenre polynomials))``.
        x: Interpolation points. Indices are ``(tdim, entity index,
            point index, dim)``.
        M: The interpolation matrices. Indices are ``(tdim, entity
            index, dof, vs, point_index, derivative)``.
        interpolation_nderivs: The number of derivatives that need to be
            used during interpolation.
        map_type: The type of map to be used to map values from the
            reference to a cell.
        sobolev_space: Underlying Sobolev space for the element.
        discontinuous: Indicates whether or not this is the
            discontinuous version of the element.
        embedded_subdegree: The highest degree ``n`` such that a
            Lagrange (or vector Lagrange) element of degree ``n`` is a
            subspace of this element.
        embedded_superdegree: The highest degree of a polynomial in this
            element's polyset.
        polyset_type: Polyset type for the element.
        dtype: Floating point data type.

    Returns:
        A custom finite element.
    """
    e = _basix.create_custom_element(
        cell_type,
        tuple(reference_value_shape),
        wcoeffs,
        x,
        M,
        interpolation_nderivs,
        map_type,
        sobolev_space,
        discontinuous,
        embedded_subdegree,
        embedded_superdegree,
        polyset_type,
        dtype=dtype,
    )
    return _BasixElement(e)


def mixed_element(elements: list[_ElementBase]) -> _ElementBase:
    """Create a UFL compatible mixed element from a list of elements.

    Args:
        elements: The list of elements

    Returns:
        A mixed finite element.
    """
    return _MixedElement(elements)


def quadrature_element(
    cell: _typing.Union[str, _basix.CellType],
    value_shape: tuple[int, ...] = (),
    scheme: _typing.Optional[str] = None,
    degree: _typing.Optional[int] = None,
    points: _typing.Optional[_npt.NDArray[np.floating]] = None,
    weights: _typing.Optional[_npt.NDArray[np.floating]] = None,
    pullback: _AbstractPullback = _ufl.identity_pullback,
    symmetry: _typing.Optional[bool] = None,
    dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
    """Create a quadrature element.

    When creating this element, either the quadrature scheme and degree
    must be input or the quadrature points and weights must be.

    Args:
        cell: Cell to create the element on.
        value_shape: Value shape of the element.
        scheme: Quadrature scheme.
        degree: Quadrature degree.
        points: Quadrature points.
        weights: Quadrature weights.
        pullback: Map name.
        symmetry: Set to ``True`` if the tensor is symmetric. Valid for
            rank 2 elements only.
        dtype: Data type of quadrature points and weights

    Returns:
        A 'quadrature' finite element.
    """
    if isinstance(cell, str):
        cell = _basix.CellType[cell]

    if points is None:
        assert weights is None
        assert degree is not None
        if scheme is None:
            points, weights = _basix.make_quadrature(cell, degree)  # type: ignore
        else:
            points, weights = _basix.make_quadrature(  # type: ignore
                cell, degree, rule=_basix.quadrature.string_to_type(scheme)
            )

    assert points is not None
    assert weights is not None

    e = _QuadratureElement(cell, points, weights, pullback, degree, dtype=dtype)
    if value_shape == ():
        if symmetry is not None:
            raise ValueError("Cannot pass a symmetry argument to this element.")
        return e
    else:
        return blocked_element(e, shape=value_shape, symmetry=symmetry)


def real_element(
    cell: _typing.Union[_basix.CellType, str], value_shape: tuple[int, ...]
) -> _ElementBase:
    """Create a real element.

    Args:
        cell: Cell to create the element on.
        value_shape: Value shape of the element.

    Returns:
        A 'real' finite element.

    """
    if isinstance(cell, str):
        cell = _basix.CellType[cell]

    return _RealElement(cell, value_shape)


def blocked_element(
    sub_element: _ElementBase,
    shape: tuple[int, ...],
    symmetry: _typing.Optional[bool] = None,
) -> _ElementBase:
    """Create a UFL compatible blocked element.

    Args:
        sub_element: Element used for each block.
        shape: Value shape of the element. For scalar-valued families,
            this can be used to create vector and tensor elements.
        symmetry: Set to ``True`` if the tensor is symmetric. Valid for
            rank 2 elements only.

    Returns:
        A blocked finite element.
    """
    if len(sub_element.reference_value_shape) != 0:
        raise ValueError("Cannot create a blocked element containing a non-scalar element.")

    return _BlockedElement(sub_element, shape=shape, symmetry=symmetry)


def wrap_element(element: _basix.finite_element.FiniteElement) -> _ElementBase:
    """Wrap a Basix element as a Basix UFL element."""
    return _BasixElement(element)
