gap> G:=SpaceGroup(4,2);; gap> R:=ResolutionCubicalCrystGroup(G,12); Resolution of length 12 in characteristic 0 for <matrix group with 5 generators> . gap> R!.dimension(5); 16 gap> R!.dimension(7); 16 gap> List([1..16],k->R!.boundary(5,k)=R!.boundary(7,k)); [ true, true, true, true, true, true, true, true, true, true, true, true, true, true, true, true ] gap> C:=HomToIntegers(R); Cochain complex of length 12 in characteristic 0 . gap> Cohomology(C,0); [ 0 ] gap> Cohomology(C,1); [ ] gap> Cohomology(C,2); [ 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0 ] gap> Cohomology(C,3); [ ] gap> Cohomology(C,4); [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0 ] gap> Cohomology(C,5); [ ] gap> Cohomology(C,6); [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ] gap> Cohomology(C,7); [ ] gap> IntegralRingGenerators(R,1); [ ] gap> IntegralRingGenerators(R,2); [ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ] gap> IntegralRingGenerators(R,3); [ ] gap> IntegralRingGenerators(R,4); [ ] gap> IntegralRingGenerators(R,5); [ ] gap> IntegralRingGenerators(R,6); [ ] gap> IntegralRingGenerators(R,7); [ ] gap> IntegralRingGenerators(R,8); [ ] gap> IntegralRingGenerators(R,9); [ ] gap> IntegralRingGenerators(R,10); [ ]