Group number: 8 Group description: C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2) Cohomology generators Degree 1: a, b Degree 2: c, d Degree 3: e Degree 5: f, g Degree 6: h Degree 8: p Cohomology relations 1: f^2 2: c*h+e*f 3: c*f 4: b*h+c*g 5: b*e+c*d 6: a*h 7: a*g 8: a*f+b*f 9: a*e+c^2 10: a*c 11: a*b 12: a^2 13: d*e*h+e^2*g+f*h 14: d^2*h+d*e*f+d*e*g+f*g 15: c^2*d+b*f 16: b*c*g+e*f 17: b*c*d+c*e 18: b^2*g+d*f 19: b^2*c+c^2 20: b^3+a*d 21: c*d^2*e+c*d*g+d^2*f+e*h 22: c*d^3+d*e^2+d*h+e*f+e*g 23: b^2*d^2+c*d^2+b*f+e^2 24: b^3*d 25: d^3*e^2+d^2*e*f+c^2*p+h^2 26: d^4*e+b*c*p+e^2*g+g*h 27: d^5+b*d^2*g+b^2*p+f*g+g^2 Poincare series (x^5+x^2+1)/(x^8-2*x^7+2*x^6-2*x^5+2*x^4-2*x^3+2*x^2-2*x+1) Steenrod squares Sq^1(c)=0 Sq^1(d)=b*b*b+d*b Sq^1(e)=c*b*b Sq^2(e)=e*d+f Sq^1(f)=c*d*b*b+d*d*b*b Sq^2(f)=g*b*b Sq^4(f)=p*a Sq^1(g)=d*d*d+g*b Sq^2(g)=0 Sq^4(g)=c*d*d*d*b+g*d*b*b+g*d*d+p*a+p*b Sq^1(h)=c*d*d*b+e*d*d Sq^2(h)=d*d*d*b*b+c*d*d*d+g*c*b Sq^4(h)=d*d*d*d*b*b+g*e*d+p*c Sq^1(p)=c*d*d*d*b Sq^2(p)=d*d*d*d*b*b+c*d*d*d*d Sq^4(p)=d*d*d*d*d*b*b+d*d*d*d*d*d+g*d*d*d*b+g*g*d+p*d*d