gap> gamma:=HAP_CongruenceSubgroupGamma0(11);; gap> AbelianInvariants(Kernel(CuspidalCohomologyHomomorphism(gamma,1,2))); [ 0, 0 ] gap> T1:=HeckeOperator(gamma,1,2);; Display(T1); [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] gap> T2:=HeckeOperator(gamma,2,2);; Display(T2); [ [ 3, -4, 4 ], [ 0, -2, 0 ], [ 0, 0, -2 ] ] gap> T3:=HeckeOperator(gamma,3,2);; Display(T3); [ [ 4, -4, 4 ], [ 0, -1, 0 ], [ 0, 0, -1 ] ] gap> T5:=HeckeOperator(gamma,5,2);; Display(T5); [ [ 6, -4, 4 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] gap> T7:=HeckeOperator(gamma,7,2);; Display(T7); [ [ 8, -8, 8 ], [ 0, -2, 0 ], [ 0, 0, -2 ] ]