gravity derivations
normal gravity at sea level from latitude
symbol description unit variable name \(g\) normal gravity at sea level \(\frac{m}{s^2}\) gravity {:} \(\phi\) latitude \(degN\) latitude {:} The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.
\[\begin{eqnarray} g & = & 9.7803253359 \frac{1 + 0.00193185265241{\sin}^2(\frac{\pi}{180}\phi)} {\sqrt{1 - 0.00669437999013{\sin}^2(\frac{\pi}{180}\phi)}} \end{eqnarray}\]gravity at specific altitude
symbol name unit variable name \(a\) WGS84 semi-major axis \(m\) \(b\) WGS84 semi-minor axis \(m\) \(f\) WGS84 flattening \(m\) \(g_{h}\) gravity at specific height \(\frac{m}{s^2}\) gravity {:,vertical} \(g\) normal gravity at sea level \(\frac{m}{s^2}\) gravity {:} \(GM\) WGS84 earth’s gravitational constant \(\frac{m^3}{s^2}\) \(z\) altitude \(m\) altitude {:,vertical} \(\phi\) latitude \(degN\) latitude {:} \(\omega\) WGS84 earth angular velocity \(rad/s\) The pattern : for the dimensions can represent {vertical}, {latitude,longitude}, {latitude,longitude,vertical}, {time}, {time,vertical}, {time,latitude,longitude}, {time,latitude,longitude,vertical}, or no dimensions at all.
\begin{eqnarray} m & = & \frac{\omega^2a^2b}{GM} \\ g_{h} & = & g \left[ 1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)z + \frac{3}{a^2}z^2 \right] \\ \end{eqnarray}gravity at earth surface
symbol name unit variable name \(a\) WGS84 semi-major axis \(m\) \(b\) WGS84 semi-minor axis \(m\) \(f\) WGS84 flattening \(m\) \(g_{surf}\) gravity at surface altitude \(\frac{m}{s^2}\) surface_gravity {:} \(g\) normal gravity at sea level \(\frac{m}{s^2}\) gravity {:} \(GM\) WGS84 earth’s gravitational constant \(\frac{m^3}{s^2}\) \(z_{surf}\) surface altitude \(m\) surface_altitude {:} \(\phi\) latitude \(degN\) latitude {:} \(\omega\) WGS84 earth angular velocity \(rad/s\) The pattern : for the dimensions can represent {latitude,longitude}, {time}, {time,latitude,longitude}, or no dimensions at all.
\begin{eqnarray} m & = & \frac{\omega^2a^2b}{GM} \\ g_{surf} & = & g \left[ 1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)z + \frac{3}{a^2}z^2 \right] \\ \end{eqnarray}