latitude derivations
- latitude from polygon - symbol - description - unit - variable name - \(\lambda\) - longitude - \(degE\) - longitude {:} - \(\lambda^{B}(i)\) - longitude - \(degE\) - longitude_bounds {:,N} - \(\phi\) - latitude - \(degN\) - latitude {:} - \(\phi^{B}(i)\) - latitude - \(degN\) - latitude_bounds {:,N} - The centroid is determined from the normal vector of the polygon area, which is the sum of the area weighted moments of consecutive vertices \(\mathbf{p}(i)\), \(\mathbf{p}(i+1)\) for all polygon edges (with \(\mathbf{p}(N+1):=\mathbf{p}(1)\)). - Convert all polygon corner coordinates defined by \(\phi^{B}(i)\) and \(\lambda^{B}(i)\) into unit sphere points \(\mathbf{p}(i) = [x_{i}, y_{i}, z_{i}]\) \[\begin{split}\begin{eqnarray} w_{i} & = & \frac{1}{2} \begin{cases} \mathbf{p}(i) \cdot \mathbf{p}(i+1) \lt 0, & \pi - 2 asin(\frac{\Vert\mathbf{p}(i) + \mathbf{p}(i+1)\Vert}{2}) \\ \mathbf{p}(i) \cdot \mathbf{p}(i+1) \ge 0, & 2 asin(\frac{\Vert\mathbf{p}(i) - \mathbf{p}(i+1)\Vert}{2}) \end{cases} \\ \mathbf{p}_{center} & = & \sum_{i}{w_{i} \frac{\mathbf{p}(i) \times \mathbf{p}(i+1)}{\Vert\mathbf{p}(i) \times \mathbf{p}(i+1)\Vert}} \\ \end{eqnarray}\end{split}\]- The vector \(\mathbf{p}_{center}\) is converted back to \(\phi\) and \(\lambda\) 
- latitude from range - symbol - description - unit - variable name - \(\phi\) - latitude - \(degN\) - latitude {:} - \(\phi^{B}(l)\) - latitude boundaries (\(l \in \{1,2\}\)) - \(degN\) - latitude_bounds {:,2} - The pattern : for the dimensions can represent {latitude}, or {time,latitude}. \[\phi = \frac{\phi^{B}(2) + \phi^{B}(1)}{2}\]
- latitude from vertical profile latitudes - symbol - description - unit - variable name - \(\phi\) - single latitude for the full profile - \(degN\) - latitude {:} - \(\phi(i)\) - latitude for each profile point - \(degN\) - latitude {:,vertical} - \(N\) - number of profile points - The pattern : for the dimensions can represent {time}, or no dimensions at all. \[\begin{split}\begin{eqnarray} N & = & max(i, \phi(i) \neq NaN) \\ \phi & = & \phi(N/2) \end{eqnarray}\end{split}\]
- latitude from sensor latitude - symbol - description - unit - variable name - \(\phi\) - latitude - \(degN\) - latitude {:} - \(\phi_{instr}\) - latitude of the sensor - \(degN\) - sensor_latitude {:} - The pattern : for the dimensions can represent {time}, or no dimensions at all. \[\phi = \phi_{instr}\]