I. A THEOREM

Theorem 1. Whenever this, then that.

Proof of Theorem 1: Because I say so.
This completes the proof.

II. IEEE STYLE EQNARRAY

Normal numbering.

\[N = 1 \quad (1) \]
\[N = 2 \quad (2) \]

No numbering.

\[N = 3 \]
\[N = 3 \]

Only number first

\[N = 3 \quad (3) \]
\[N = 4 \]

Normal numbering, done differently

\[N = 4 \quad (4) \]
\[N = 5 \quad (5) \]

Only number last.

\[N = 6 \]
\[N = 6 \quad (6) \]

Same done differently

\[N = 7 \]
\[N = 7 \quad (7) \]

Number all

\[N = 8 \quad (8) \]
\[N = 9 \quad (9) \]

Sub-number first

\[N = 10 \quad (10a) \]
\[N = 11 \quad (11) \]

Sub-number persistently

\[N = 12 \quad (12a) \]
\[N = 12 \quad (12b) \]

Resume normal numbering

\[N = 13 \quad (13) \]
\[N = 14 \quad (14) \]

\[N = 14 \]

And boxed? \(N = 14 \)
Mixed case, single column

\[x_1 \quad (15a) \]
\[x_2 \quad (15b) \]
\[x_3 \quad (16a) \]
\[x_4 \quad (16b) \]
\[x_5 \quad (17) \]
\[x_6 \quad (18) \]