package it.unimi.dsi.fastutil;

/*
 * Copyright (C) 2002-2017 Sebastiano Vigna
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import it.unimi.dsi.fastutil.ints.IntComparator;

import java.util.ArrayList;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;

/** A class providing static methods and objects that do useful things with arrays.
 *
 * <p>In addition to commodity methods, this class contains {@link Swapper}-based implementations
 * of {@linkplain #quickSort(int, int, IntComparator, Swapper) quicksort} and of
 * a stable, in-place {@linkplain #mergeSort(int, int, IntComparator, Swapper) mergesort}. These
 * generic sorting methods can be used to sort any kind of list, but they find their natural
 * usage, for instance, in sorting arrays in parallel.
 *
 * @see Arrays
 */

public class Arrays {

	private Arrays() {}

	/** This is a safe value used by {@link ArrayList} (as of Java 7) to avoid
	 *  throwing {@link OutOfMemoryError} on some JVMs. We adopt the same value. */
	public static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

	/** Ensures that a range given by its first (inclusive) and last (exclusive) elements fits an array of given length.
	 *
	 * <p>This method may be used whenever an array range check is needed.
	 *
	 * @param arrayLength an array length.
	 * @param from a start index (inclusive).
	 * @param to an end index (inclusive).
	 * @throws IllegalArgumentException if {@code from} is greater than {@code to}.
	 * @throws ArrayIndexOutOfBoundsException if {@code from} or {@code to} are greater than {@code arrayLength} or negative.
	 */
	public static void ensureFromTo(final int arrayLength, final int from, final int to) {
		if (from < 0) throw new ArrayIndexOutOfBoundsException("Start index (" + from + ") is negative");
		if (from > to) throw new IllegalArgumentException("Start index (" + from + ") is greater than end index (" + to + ")");
		if (to > arrayLength) throw new ArrayIndexOutOfBoundsException("End index (" + to + ") is greater than array length (" + arrayLength + ")");
	}

	/** Ensures that a range given by an offset and a length fits an array of given length.
	 *
	 * <p>This method may be used whenever an array range check is needed.
	 *
	 * @param arrayLength an array length.
	 * @param offset a start index for the fragment
	 * @param length a length (the number of elements in the fragment).
	 * @throws IllegalArgumentException if {@code length} is negative.
	 * @throws ArrayIndexOutOfBoundsException if {@code offset} is negative or {@code offset}+{@code length} is greater than {@code arrayLength}.
	 */
	public static void ensureOffsetLength(final int arrayLength, final int offset, final int length) {
		if (offset < 0) throw new ArrayIndexOutOfBoundsException("Offset (" + offset + ") is negative");
		if (length < 0) throw new IllegalArgumentException("Length (" + length + ") is negative");
		if (offset + length > arrayLength) throw new ArrayIndexOutOfBoundsException("Last index (" + (offset + length) + ") is greater than array length (" + arrayLength + ")");
	}

	/**
	 * Transforms two consecutive sorted ranges into a single sorted range. The initial ranges are
	 * {@code [first..middle)} and {@code [middle..last)}, and the resulting range is
	 * {@code [first..last)}. Elements in the first input range will precede equal elements in
	 * the second.
	 */
	private static void inPlaceMerge(final int from, int mid, final int to, final IntComparator comp, final Swapper swapper) {
		if (from >= mid || mid >= to) return;
		if (to - from == 2) {
			if (comp.compare(mid, from) < 0) swapper.swap(from, mid);
			return;
		}

		int firstCut;
		int secondCut;

		if (mid - from > to - mid) {
			firstCut = from + (mid - from) / 2;
			secondCut = lowerBound(mid, to, firstCut, comp);
		}
		else {
			secondCut = mid + (to - mid) / 2;
			firstCut = upperBound(from, mid, secondCut, comp);
		}

		int first2 = firstCut;
		int middle2 = mid;
		int last2 = secondCut;
		if (middle2 != first2 && middle2 != last2) {
			int first1 = first2;
			int last1 = middle2;
			while (first1 < --last1)
				swapper.swap(first1++, last1);
			first1 = middle2;
			last1 = last2;
			while (first1 < --last1)
				swapper.swap(first1++, last1);
			first1 = first2;
			last1 = last2;
			while (first1 < --last1)
				swapper.swap(first1++, last1);
		}

		mid = firstCut + (secondCut - mid);
		inPlaceMerge(from, firstCut, mid, comp, swapper);
		inPlaceMerge(mid, secondCut, to, comp, swapper);
	}

	/**
	 * Performs a binary search on an already-sorted range: finds the first position where an
	 * element can be inserted without violating the ordering. Sorting is by a user-supplied
	 * comparison function.
	 *
	 * @param from the index of the first element (inclusive) to be included in the binary search.
	 * @param to the index of the last element (exclusive) to be included in the binary search.
	 * @param pos the position of the element to be searched for.
	 * @param comp the comparison function.
	 * @return the largest index i such that, for every j in the range {@code [first..i)},
	 * {@code comp.compare(j, pos)} is {@code true}.
	 */
	private static int lowerBound(int from, final int to, final int pos, final IntComparator comp) {
		// if (comp==null) throw new NullPointerException();
		int len = to - from;
		while (len > 0) {
			int half = len / 2;
			int middle = from + half;
			if (comp.compare(middle, pos) < 0) {
				from = middle + 1;
				len -= half + 1;
			}
			else {
				len = half;
			}
		}
		return from;
	}


	/**
	 * Performs a binary search on an already sorted range: finds the last position where an element
	 * can be inserted without violating the ordering. Sorting is by a user-supplied comparison
	 * function.
	 *
	 * @param from the index of the first element (inclusive) to be included in the binary search.
	 * @param to the index of the last element (exclusive) to be included in the binary search.
	 * @param pos the position of the element to be searched for.
	 * @param comp the comparison function.
	 * @return The largest index i such that, for every j in the range {@code [first..i)},
	 * {@code comp.compare(pos, j)} is {@code false}.
	 */
	private static int upperBound(int from, final int mid, final int pos, final IntComparator comp) {
		// if (comp==null) throw new NullPointerException();
		int len = mid - from;
		while (len > 0) {
			int half = len / 2;
			int middle = from + half;
			if (comp.compare(pos, middle) < 0) {
				len = half;
			}
			else {
				from = middle + 1;
				len -= half + 1;
			}
		}
		return from;
	}

	/**
	 * Returns the index of the median of the three indexed chars.
	 */
	private static int med3(final int a, final int b, final int c, final IntComparator comp) {
		int ab = comp.compare(a, b);
		int ac = comp.compare(a, c);
		int bc = comp.compare(b, c);
		return (ab < 0 ?
				(bc < 0 ? b : ac < 0 ? c : a) :
				(bc > 0 ? b : ac > 0 ? c : a));
	}

	 private static final int MERGESORT_NO_REC = 16;

	 /** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified
	 * comparator using mergesort.
	 *
	 * <p>This sort is guaranteed to be <i>stable</i>: equal elements will not be reordered as a result
	 * of the sort. The sorting algorithm is an in-place mergesort that is significantly slower than a
	 * standard mergesort, as its running time is <i>O</i>(<var>n</var>&nbsp;(log&nbsp;<var>n</var>)<sup>2</sup>), but it does not allocate additional memory; as a result, it can be
	 * used as a generic sorting algorithm.
	 *
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param c the comparator to determine the order of the generic data (arguments are positions).
	 * @param swapper an object that knows how to swap the elements at any two positions.
	 */
	public static void mergeSort(final int from, final int to, final IntComparator c, final Swapper swapper) {
		/*
		 * We retain the same method signature as quickSort. Given only a comparator and swapper we
		 * do not know how to copy and move elements from/to temporary arrays. Hence, in contrast to
		 * the JDK mergesorts this is an "in-place" mergesort, i.e. does not allocate any temporary
		 * arrays. A non-inplace mergesort would perhaps be faster in most cases, but would require
		 * non-intuitive delegate objects...
		 */
		final int length = to - from;

		// Insertion sort on smallest arrays
		if (length < MERGESORT_NO_REC) {
			for (int i = from; i < to; i++) {
				for (int j = i; j > from && (c.compare(j - 1, j) > 0); j--) {
					swapper.swap(j, j - 1);
				}
			}
			return;
		}

		// Recursively sort halves
		int mid = (from + to) >>> 1;
		mergeSort(from, mid, c, swapper);
		mergeSort(mid, to, c, swapper);

		// If list is already sorted, nothing left to do. This is an
		// optimization that results in faster sorts for nearly ordered lists.
		if (c.compare(mid - 1, mid) <= 0) return;

		// Merge sorted halves
		inPlaceMerge(from, mid, to, c, swapper);
	}

	/** Swaps two sequences of elements using a provided swapper.
	 *
	 * @param swapper the swapper.
	 * @param a a position in {@code x}.
	 * @param b another position in {@code x}.
	 * @param n the number of elements to exchange starting at {@code a} and {@code b}.
	 */
	protected static void swap(final Swapper swapper, int a, int b, final int n) {
		for (int i = 0; i < n; i++, a++, b++) swapper.swap(a, b);
	}

	private static final int QUICKSORT_NO_REC = 16;
	private static final int PARALLEL_QUICKSORT_NO_FORK = 8192;
	private static final int QUICKSORT_MEDIAN_OF_9 = 128;

	protected static class ForkJoinGenericQuickSort extends RecursiveAction {
		private static final long serialVersionUID = 1L;
		private final int from;
		private final int to;
		private final IntComparator comp;
		private final Swapper swapper;

		public ForkJoinGenericQuickSort(final int from, final int to, final IntComparator comp, final Swapper swapper) {
			this.from = from;
			this.to = to;
			this.comp = comp;
			this.swapper = swapper;
		}

		@Override
		protected void compute() {
			final int len = to - from;
			if (len < PARALLEL_QUICKSORT_NO_FORK) {
				quickSort(from, to, comp, swapper);
				return;
			}
			// Choose a partition element, v
			int m = from + len / 2;
			int l = from;
			int n = to - 1;
			int s = len / 8;
			l = med3(l, l + s, l + 2 * s, comp);
			m = med3(m - s, m, m + s, comp);
			n = med3(n - 2 * s, n - s, n, comp);
			m = med3(l, m, n, comp);
			// Establish Invariant: v* (<v)* (>v)* v*
			int a = from, b = a, c = to - 1, d = c;
			while (true) {
				int comparison;
				while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) {
					if (comparison == 0) {
						// Fix reference to pivot if necessary
						if (a == m) m = b;
						else if (b == m) m = a;
						swapper.swap(a++, b);
					}
					b++;
				}
				while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) {
					if (comparison == 0) {
						// Fix reference to pivot if necessary
						if (c == m) m = d;
						else if (d == m) m = c;
						swapper.swap(c, d--);
					}
					c--;
				}
				if (b > c) break;
				// Fix reference to pivot if necessary
				if (b == m) m = d;
				else if (c == m) m = c;
				swapper.swap(b++, c--);
			}

			// Swap partition elements back to middle
			s = Math.min(a - from, b - a);
			swap(swapper, from, b - s, s);
			s = Math.min(d - c, to - d - 1);
			swap(swapper, b, to - s, s);

			// Recursively sort non-partition-elements
			int t;
			s = b - a;
			t = d - c;
			if (s > 1 && t > 1) invokeAll(new ForkJoinGenericQuickSort(from, from + s, comp, swapper), new ForkJoinGenericQuickSort(to - t, to, comp, swapper));
			else if (s > 1) invokeAll(new ForkJoinGenericQuickSort(from, from + s, comp, swapper));
			else invokeAll(new ForkJoinGenericQuickSort(to - t, to, comp, swapper));
		}
	}

	/** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified
	 * comparator using a parallel quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * <p>This implementation uses a {@link ForkJoinPool} executor service with {@link Runtime#availableProcessors()} parallel threads.
	 *
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param comp the comparator to determine the order of the generic data.
	 * @param swapper an object that knows how to swap the elements at any two positions.
	 *
	 */
	public static void parallelQuickSort(final int from, final int to, final IntComparator comp, final Swapper swapper) {
		final ForkJoinPool pool = new ForkJoinPool(Runtime.getRuntime().availableProcessors());
		pool.invoke(new ForkJoinGenericQuickSort(from, to, comp, swapper));
		pool.shutdown();
	}


	/** Sorts the specified range of elements using the specified swapper and according to the order induced by the specified
	 * comparator using parallel quicksort.
	 *
	 * <p>The sorting algorithm is a tuned quicksort adapted from Jon L. Bentley and M. Douglas
	 * McIlroy, &ldquo;Engineering a Sort Function&rdquo;, <i>Software: Practice and Experience</i>, 23(11), pages
	 * 1249&minus;1265, 1993.
	 *
	 * <p>This implementation uses a {@link ForkJoinPool} executor service with {@link Runtime#availableProcessors()} parallel threads.
	 *
	 * @param from the index of the first element (inclusive) to be sorted.
	 * @param to the index of the last element (exclusive) to be sorted.
	 * @param comp the comparator to determine the order of the generic data.
	 * @param swapper an object that knows how to swap the elements at any two positions.
	 *
	 */
	public static void quickSort(final int from, final int to, final IntComparator comp, final Swapper swapper) {
		final int len = to - from;
		// Insertion sort on smallest arrays
		if (len < QUICKSORT_NO_REC) {
			for (int i = from; i < to; i++)
				for (int j = i; j > from && (comp.compare(j - 1, j) > 0); j--) {
					swapper.swap(j, j - 1);
				}
			return;
		}

		// Choose a partition element, v
		int m = from + len / 2; // Small arrays, middle element
		int l = from;
		int n = to - 1;
		if (len > QUICKSORT_MEDIAN_OF_9) { // Big arrays, pseudomedian of 9
			int s = len / 8;
			l = med3(l, l + s, l + 2 * s, comp);
			m = med3(m - s, m, m + s, comp);
			n = med3(n - 2 * s, n - s, n, comp);
		}
		m = med3(l, m, n, comp); // Mid-size, med of 3
		// int v = x[m];

		int a = from;
		int b = a;
		int c = to - 1;
		// Establish Invariant: v* (<v)* (>v)* v*
		int d = c;
		while (true) {
			int comparison;
			while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) {
				if (comparison == 0) {
					// Fix reference to pivot if necessary
					if (a == m) m = b;
					else if (b == m) m = a;
					swapper.swap(a++, b);
				}
				b++;
			}
			while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) {
				if (comparison == 0) {
					// Fix reference to pivot if necessary
					if (c == m) m = d;
					else if (d == m) m = c;
					swapper.swap(c, d--);
				}
				c--;
			}
			if (b > c) break;
			// Fix reference to pivot if necessary
			if (b == m) m = d;
			else if (c == m) m = c;
			swapper.swap(b++, c--);
		}

		// Swap partition elements back to middle
		int s;
		s = Math.min(a - from, b - a);
		swap(swapper, from, b - s, s);
		s = Math.min(d - c, to - d - 1);
		swap(swapper, b, to - s, s);

		// Recursively sort non-partition-elements
		if ((s = b - a) > 1) quickSort(from, from + s, comp, swapper);
		if ((s = d - c) > 1) quickSort(to - s, to, comp, swapper);
	}
}
