// MatrixExponential.java
//
// (c) 1999-2001 PAL Development Core Team
//
// This package may be distributed under the
// terms of the Lesser GNU General Public License (LGPL)

package pal.substmodel;

import pal.math.*;


/**
 * compute matrix exponential and, subsequently, transition probabilities
 * for a given rate matrix
 *
 * @version $Id: MatrixExponential.java,v 1.20 2004/08/05 03:00:22 matt Exp $
 *
 * @author Korbinian Strimmer
 */
public class MatrixExponential implements	Cloneable, java.io.Serializable
{
	//
	// Public stuff
	//

	// Constraints and conventions:
	// - first argument: row
	// - second argument: column
	// - transition: from row to column
	// - sum of every row = 1
	// - sum of frequencies = 1
	// - frequencies * rate matrix = 1 (stationarity)
//
	// Private stuff
	//

	// Eigenvalues, eigenvectors, and inverse eigenvectors
	private final double[] Eval;
	private final double[][] Evec;
	private final double[][] Ievc;
	private final double[][] iexp;
	private final int[] ordr;
	private final double[] evali;
	private final double amat[][];


	/** dimension of rate matrix */
	private final int dimension_;

	/** transition probability matrix */
	private final double[][] transProb;



	/**
	 * create module
	 *
	 * @param r rate matrix
	 */
	public MatrixExponential(int dimension)	{
		this.dimension_ = dimension;
		if(dimension<=0) {
		  throw new IllegalArgumentException("Invalid dimension:"+dimension);
		}
		transProb = new double[dimension][dimension];
		Eval = new double[dimension];
		Evec = new double[dimension][dimension];
		Ievc = new double[dimension][dimension];
		iexp = new double[dimension][dimension];
		amat = new double[dimension][dimension];

		ordr = new int[dimension];
		evali = new double[dimension];

	}
	/**
	 * create module
	 *
	 * @param r rate matrix
	 */
	public MatrixExponential(RateMatrix r)	{
		int dimension = r.getDimension();
		this.dimension_ = dimension;
		transProb = new double[dimension][dimension];
		Eval = new double[dimension];
		Evec = new double[dimension][dimension];
		Ievc = new double[dimension][dimension];
		iexp = new double[dimension][dimension];
		amat = new double[dimension][dimension];

		ordr = new int[dimension];
		evali = new double[dimension];
		setMatrix(r);
	}

	public final double getTransitionProbability(int from, int to) {
		return transProb[from][to];
	}

	public int getDimension() { return dimension_;	}
	public void updateByRelativeRates(double[][] relativeRates) {
		/* compute eigenvalues and eigenvectors */
	for (int i = 0; i < dimension_; i++)	{
			for (int j = 0; j < dimension_; j++)	{
				amat[i][j] = relativeRates[i][j];
			}
		}

		elmhes(amat, ordr, dimension_);
		eltran(amat, Evec, ordr, dimension_);
		hqr2(dimension_, 1, dimension_, amat, Evec, Eval, evali);
		luinverse(Evec, Ievc, dimension_);
	}
	/**
	 * update rate matrix used in present module
	 *
	 * @param r rate matrix
	 */
	public void setMatrix(RateMatrix r) {
		updateByRelativeRates(r.getRelativeRates());
	}

	/**
	 * A utility method for speed, transfers trans prob information quickly
	 * into store
	 */
	public final void getTransitionProbabilities(double[][] probabilityStore) {
		// this check should be changed to an assertion once we adopt Java 1.4
		if (probabilityStore == null) throw new RuntimeException("Assertion Error: probabilityStore == null");
		pal.misc.Utils.copy(transProb,probabilityStore);
	}
	private final void setIdentity() {
		for(int i = 0 ; i < transProb.length ; i++) {
			final double[] row = transProb[i];
			for(int j = 0 ; j < row.length ; j++) {
				row[j] = (i==j) ? 1 : 0;
			}
		}
	}
	/**
	 * compute transition probabilities for a expected distance
	 * using the prespecified rate matrix
	 *
	 * @param arc expected distance
	 */
	public final void setDistance(double arc) {
		if(arc<pal.misc.BranchLimits.MINARC) {
			arc = pal.misc.BranchLimits.MINARC;
		}
		int i, j, k;
		double temp;
		for (k = 0; k < dimension_; k++)		{
			temp = Math.exp(arc * Eval[k]);
			for (j = 0; j < dimension_; j++) {
				iexp[k][j] = Ievc[k][j] * temp;
			}
		}
		for (i = 0; i < dimension_; i++)	{
			for (j = 0; j < dimension_; j++)	{
				temp = 0.0;
				for (k = 0; k < dimension_; k++)	{
					temp += Evec[i][k] * iexp[k][j];
				}
				transProb[i][j] = Math.abs(temp);
			}
		}
	}

	/**
	 * compute transition probabilities for a expected distance
	 * using the prespecified rate matrix
	 *
	 * @note the resulting matrix works [to][from] as opposed to [from][to]
	 *
	 * @param arc expected distance
	 */
	public final void setDistanceTranspose(double arc) {
		if(arc<pal.misc.BranchLimits.MINARC) {
			arc = pal.misc.BranchLimits.MINARC;
		}
		int i, j, k;
		double temp;
		for (k = 0; k < dimension_ ; k++)	{
			temp = Math.exp(arc * Eval[k]);
			for (j = 0; j < dimension_ ; j++)	{
				iexp[k][j] = Ievc[k][j] * temp;
			}
		}
		for (i = 0; i < dimension_ ; i++) {
			for (j = 0; j < dimension_ ; j++)	{
				temp = 0.0;
				for (k = 0; k < dimension_ ; k++)	{
					temp += Evec[i][k] * iexp[k][j];
				}
				//This is the line that is different from the normal setDistance method
				//Was transProb[j][i]
				transProb[j][i] = Math.abs(temp);
			}
		}
	}


	private void elmhes(double[][] a, int[] ordr, int n)	{
		int m, j, i;
		double y, x;

		for (i = 0; i < n; i++)		{
			ordr[i] = 0;
		}
		for (m = 2; m < n; m++)		{
			x = 0.0;
			i = m;
			for (j = m; j <= n; j++)			{
				if (Math.abs(a[j - 1][m - 2]) > Math.abs(x))	{
					x = a[j - 1][m - 2];
					i = j;
				}
			}
			ordr[m - 1] = i;
			if (i != m)			{
				for (j = m - 2; j < n; j++)		{
					y = a[i - 1][j];
					a[i - 1][j] = a[m - 1][j];
					a[m - 1][j] = y;
				}
				for (j = 0; j < n; j++)		{
					y = a[j][i - 1];
					a[j][i - 1] = a[j][m - 1];
					a[j][m - 1] = y;
				}
			}
			if (x != 0.0)		{
				for (i = m; i < n; i++)		{
					y = a[i][m - 2];
					if (y != 0.0){
						y /= x;
						a[i][m - 2] = y;
						for (j = m - 1; j < n; j++)
						{
							a[i][j] -= y * a[m - 1][j];
						}
						for (j = 0; j < n; j++)
						{
							a[j][m - 1] += y * a[j][i];
						}
					}
				}
			}
		}
	}

	// Helper variables for mcdiv
	private double cr, ci;

	private void mcdiv(double ar, double ai, double br, double bi)
	{
		double s, ars, ais, brs, bis;

		s = Math.abs(br) + Math.abs(bi);
		ars = ar/s;
		ais = ai/s;
		brs = br/s;
		bis = bi/s;
		s = brs * brs + bis * bis;
		cr = (ars * brs + ais * bis)/s;
		ci = (ais * brs - ars * bis)/s;
	}

	void hqr2(int n, int low, int hgh, double[][] h, double[][] zz,
		double[] wr, double[] wi) throws ArithmeticException
	{
		int i, j, k, l=0, m, en, na, itn, its;
		double p=0, q=0, r=0, s=0, t, w, x=0, y, ra, sa, vi, vr, z=0, norm, tst1, tst2;
		boolean notLast;


		norm = 0.0;
		k = 1;
		/* store isolated roots and compute matrix norm */
		for (i = 0; i < n; i++)
		{
			for (j = k - 1; j < n; j++)
			{
				norm += Math.abs(h[i][j]);
			}
			k = i + 1;
			if (i + 1 < low || i + 1 > hgh)
			{
				wr[i] = h[i][i];
				wi[i] = 0.0;
			}
		}
		en = hgh;
		t = 0.0;
		itn = n * 30;
		while (en >= low)
		{	/* search for next eigenvalues */
			its = 0;
			na = en - 1;
			while (en >= 1)
			{
				/* look for single small sub-diagonal element */
				boolean fullLoop = true;
				for (l = en; l > low; l--)
				{
					s = Math.abs(h[l - 2][l - 2]) + Math.abs(h[l - 1][l - 1]);
					if (s == 0.0)
					{
						s = norm;
					}
					tst1 = s;
					tst2 = tst1 + Math.abs(h[l - 1][l - 2]);
					if (tst2 == tst1)
					{
						fullLoop = false;
						break;
					}
				}
				if (fullLoop)
				{
					l = low;
				}

				x = h[en - 1][en - 1];	/* form shift */
				if (l == en || l == na)
				{
					break;
				}
				if (itn == 0)
				{
					/* eigenvalues have not converged */
					System.out.println("Eigenvalues not converged");
					throw new ArithmeticException();
				}
				y = h[na - 1][na - 1];
				w = h[en - 1][na - 1] * h[na - 1][en - 1];
				/* form exceptional shift */
				if (its == 10 || its == 20)
				{
					t += x;
					for (i = low - 1; i < en; i++)
					{
						h[i][i] -= x;
					}
					s = Math.abs(h[en - 1][na - 1]) + Math.abs(h[na - 1][en - 3]);
					x = 0.75 * s;
					y = x;
					w = -0.4375 * s * s;
				}
				its++;
				itn--;
				/* look for two consecutive small sub-diagonal elements */
				for (m = en - 2; m >= l; m--)
				{
					z = h[m - 1][m - 1];
					r = x - z;
					s = y - z;
					p = (r * s - w) / h[m][m - 1] + h[m - 1][m];
					q = h[m][m] - z - r - s;
					r = h[m + 1][m];
					s = Math.abs(p) + Math.abs(q) + Math.abs(r);
					p /= s;
					q /= s;
					r /= s;
					if (m == l)
					{
						break;
					}
					tst1 = Math.abs(p) * (Math.abs(h[m - 2][m - 2]) + Math.abs(z) + Math.abs(h[m][m]));
					tst2 = tst1 + Math.abs(h[m - 1][m - 2]) * (Math.abs(q) + Math.abs(r));
					if (tst2 == tst1)
					{
						break;
					}
				}
				for (i = m + 2; i <= en; i++)
				{
					h[i - 1][i - 3] = 0.0;
					if (i != m + 2)
					{
						h[i - 1][i - 4] = 0.0;
					}
				}
				for (k = m; k <= na; k++)
				{
					if (k == na)
					{
						notLast = false;
					}
					else
					{
						notLast = true;
					}
					if (k != m)
					{
						p = h[k - 1][k - 2];
						q = h[k][k - 2];
						r = 0.0;
						if (notLast)
						{
							r = h[k + 1][k - 2];
						}
						x = Math.abs(p) + Math.abs(q) + Math.abs(r);
						if (x != 0.0)
						{
							p /= x;
							q /= x;
							r /= x;
						}
					}
					if (x != 0.0)
					{
						if (p < 0.0)
						{	/* sign */
							s = - Math.sqrt(p * p + q * q + r * r);
						}
						else
						{
							s = Math.sqrt(p * p + q * q + r * r);
						}
						if (k != m)
						{
							h[k - 1][k - 2] = -s * x;
						}
						else if (l != m)
						{
							h[k - 1][k - 2] = -h[k - 1][k - 2];
						}
						p += s;
						x = p / s;
						y = q / s;
						z = r / s;
						q /= p;
						r /= p;
						if (!notLast)
						{
							for (j = k - 1; j < n; j++)
							{	/* row modification */
								p = h[k - 1][j] + q * h[k][j];
								h[k - 1][j] -= p * x;
								h[k][j] -= p * y;
							}
							j = (en < (k + 3)) ? en : (k + 3); /* min */
							for (i = 0; i < j; i++)
							{	/* column modification */
								p = x * h[i][k - 1] + y * h[i][k];
								h[i][k - 1] -= p;
								h[i][k] -= p * q;
							}
							/* accumulate transformations */
							for (i = low - 1; i < hgh; i++)
							{
								p = x * zz[i][k - 1] + y * zz[i][k];
								zz[i][k - 1] -= p;
								zz[i][k] -= p * q;
							}
						}
						else
						{
							for (j = k - 1; j < n; j++)
							{	/* row modification */
								p = h[k - 1][j] + q * h[k][j] + r * h[k + 1][j];
								h[k - 1][j] -= p * x;
								h[k][j] -= p * y;
								h[k + 1][j] -= p * z;
							}
							j = (en < (k + 3)) ? en : (k + 3); /* min */
							for (i = 0; i < j; i++)
							{	/* column modification */
								p = x * h[i][k - 1] + y * h[i][k] + z * h[i][k + 1];
								h[i][k - 1] -= p;
								h[i][k] -= p * q;
								h[i][k + 1] -= p * r;
							}
							/* accumulate transformations */
							for (i = low - 1; i < hgh; i++)
							{
								p = x * zz[i][k - 1] + y * zz[i][k] +
									z * zz[i][k + 1];
								zz[i][k - 1] -= p;
								zz[i][k] -= p * q;
								zz[i][k + 1] -= p * r;
							}
						}
					}
				}				 /* for k */
			}					 /* while infinite loop */
			if (l == en)
			{				 /* one root found */
				h[en - 1][en - 1] = x + t;
				wr[en - 1] = h[en - 1][en - 1];
				wi[en - 1] = 0.0;
				en = na;
				continue;
			}
			y = h[na - 1][na - 1];
			w = h[en - 1][na - 1] * h[na - 1][en - 1];
			p = (y - x) / 2.0;
			q = p * p + w;
			z = Math.sqrt(Math.abs(q));
			h[en - 1][en - 1] = x + t;
			x = h[en - 1][en - 1];
			h[na - 1][na - 1] = y + t;
			if (q >= 0.0)
			{	 /* real pair */
				if (p < 0.0)
				{	/* sign */
					z = p - Math.abs(z);
				}
				else
				{
					z = p + Math.abs(z);
				}
				wr[na - 1] = x + z;
				wr[en - 1] = wr[na - 1];
				if (z != 0.0)
				{
					wr[en - 1] = x - w / z;
				}
				wi[na - 1] = 0.0;
				wi[en - 1] = 0.0;
				x = h[en - 1][na - 1];
				s = Math.abs(x) + Math.abs(z);
				p = x / s;
				q = z / s;
				r = Math.sqrt(p * p + q * q);
				p /= r;
				q /= r;
				for (j = na - 1; j < n; j++)
				{	/* row modification */
					z = h[na - 1][j];
					h[na - 1][j] = q * z + p * h[en - 1][j];
					h[en - 1][j] = q * h[en - 1][j] - p * z;
				}
				for (i = 0; i < en; i++)
				{	/* column modification */
					z = h[i][na - 1];
					h[i][na - 1] = q * z + p * h[i][en - 1];
					h[i][en - 1] = q * h[i][en - 1] - p * z;
				}
				/* accumulate transformations */
				for (i = low - 1; i < hgh; i++)
				{
					z = zz[i][na - 1];
					zz[i][na - 1] = q * z + p * zz[i][en - 1];
					zz[i][en - 1] = q * zz[i][en - 1] - p * z;
				}
			}
			else
			{	/* complex pair */
				wr[na - 1] = x + p;
				wr[en - 1] = x + p;
				wi[na - 1] = z;
				wi[en - 1] = -z;
			}
			en -= 2;
		} /* while en >= low */
		/* backsubstitute to find vectors of upper triangular form */
		if (norm != 0.0)
		{
			for (en = n; en >= 1; en--)
			{
				p = wr[en - 1];
				q = wi[en - 1];
				na = en - 1;
				if (q == 0.0)
				{/* real vector */
					m = en;
					h[en - 1][en - 1] = 1.0;
					if (na != 0)
					{
						for (i = en - 2; i >= 0; i--)
						{
							w = h[i][i] - p;
							r = 0.0;
							for (j = m - 1; j < en; j++)
							{
								r += h[i][j] * h[j][en - 1];
							}
							if (wi[i] < 0.0)
							{
								z = w;
								s = r;
							}
							else
							{
								m = i + 1;
								if (wi[i] == 0.0)
								{
									t = w;
									if (t == 0.0)
									{
										tst1 = norm;
										t = tst1;
										do
										{
											t = 0.01 * t;
											tst2 = norm + t;
										}
										while (tst2 > tst1);
									}
									h[i][en - 1] = -(r / t);
								}
								else
								{	/* solve real equations */
									x = h[i][i + 1];
									y = h[i + 1][i];
									q = (wr[i] - p) * (wr[i] - p) + wi[i] * wi[i];
									t = (x * s - z * r) / q;
									h[i][en - 1] = t;
									if (Math.abs(x) > Math.abs(z))
										h[i + 1][en - 1] = (-r - w * t) / x;
									else
										h[i + 1][en - 1] = (-s - y * t) / z;
								}
								/* overflow control */
								t = Math.abs(h[i][en - 1]);
								if (t != 0.0)
								{
									tst1 = t;
									tst2 = tst1 + 1.0 / tst1;
									if (tst2 <= tst1)
									{
										for (j = i; j < en; j++)
										{
											h[j][en - 1] /= t;
										}
									}
								}
							}
						}
					}
				}
				else if (q > 0.0)
				{
					m = na;
					if (Math.abs(h[en - 1][na - 1]) > Math.abs(h[na - 1][en - 1]))
					{
						h[na - 1][na - 1] = q / h[en - 1][na - 1];
						h[na - 1][en - 1] = (p - h[en - 1][en - 1])/h[en - 1][na - 1];
					}
					else
					{
						mcdiv(0.0, -h[na - 1][en - 1], h[na - 1][na - 1] - p, q);
						h[na - 1][na - 1] = cr;
						h[na - 1][en - 1] = ci;
					}
					h[en - 1][na - 1] = 0.0;
					h[en - 1][en - 1] = 1.0;
					if (en != 2)
					{
						for (i = en - 3; i >= 0; i--)
						{
							w = h[i][i] - p;
							ra = 0.0;
							sa = 0.0;
							for (j = m - 1; j < en; j++)
							{
								ra += h[i][j] * h[j][na - 1];
								sa += h[i][j] * h[j][en - 1];
							}
							if (wi[i] < 0.0)
							{
								z = w;
								r = ra;
								s = sa;
							}
							else
							{
								m = i + 1;
								if (wi[i] == 0.0)
								{
									mcdiv(-ra, -sa, w, q);
									h[i][na - 1] = cr;
									h[i][en - 1] = ci;
								}
								else
								{	/* solve complex equations */
									x = h[i][i + 1];
									y = h[i + 1][i];
									vr = (wr[i] - p) * (wr[i] - p);
									vr = vr + wi[i] * wi[i] - q * q;
									vi = (wr[i] - p) * 2.0 * q;
									if (vr == 0.0 && vi == 0.0)
									{
										tst1 = norm * (Math.abs(w) + Math.abs(q) + Math.abs(x) +
														 Math.abs(y) + Math.abs(z));
										vr = tst1;
										do
										{
											vr = 0.01 * vr;
											tst2 = tst1 + vr;
										}
										while (tst2 > tst1);
									}
									mcdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi);
									h[i][na - 1] = cr;
									h[i][en - 1] = ci;
									if (Math.abs(x) > Math.abs(z) + Math.abs(q))
									{
										h[i + 1]
											[na - 1] = (q * h[i][en - 1] -
														w * h[i][na - 1] - ra) / x;
										h[i + 1][en - 1] = (-sa - w * h[i][en - 1] -
															q * h[i][na - 1]) / x;
									}
									else
									{
										mcdiv(-r - y * h[i][na - 1], -s - y * h[i][en - 1], z, q);
										h[i + 1][na - 1] = cr;
										h[i + 1][en - 1] = ci;
									}
								}
								/* overflow control */
								t = (Math.abs(h[i][na - 1]) > Math.abs(h[i][en - 1])) ?
									 Math.abs(h[i][na - 1]) : Math.abs(h[i][en - 1]);
								if (t != 0.0)
								{
									tst1 = t;
									tst2 = tst1 + 1.0 / tst1;
									if (tst2 <= tst1)
									{
										for (j = i; j < en; j++)
										{
											h[j][na - 1] /= t;
											h[j][en - 1] /= t;
										}
									}
								}
							}
						}
					}
				}
			}
			/* end back substitution. vectors of isolated roots */
			for (i = 0; i < n; i++)
			{
				if (i + 1 < low || i + 1 > hgh)
				{
					for (j = i; j < n; j++)
					{
						zz[i][j] = h[i][j];
					}
				}
			}
			/* multiply by transformation matrix to give vectors of
			 * original full matrix. */
			for (j = n - 1; j >= low - 1; j--)
			{
				m = ((j + 1) < hgh) ? (j + 1) : hgh; /* min */
				for (i = low - 1; i < hgh; i++)
				{
					z = 0.0;
					for (k = low - 1; k < m; k++)
					{
						z += zz[i][k] * h[k][j];
					}
					zz[i][j] = z;
				}
			}
		}
	}

	private void eltran(double[][] a, double[][] zz, int[] ordr, int n)
	{
		int i, j, m;

		for (i = 0; i < n; i++)
		{
			for (j = i + 1; j < n; j++)
			{
				zz[i][j] = 0.0;
				zz[j][i] = 0.0;
			}
			zz[i][i] = 1.0;
		}
		if (n <= 2)
		{
			return;
		}
		for (m = n - 1; m >= 2; m--)
		{
			for (i = m; i < n; i++)
			{
				zz[i][m - 1] = a[i][m - 2];
			}
			i = ordr[m - 1];
			if (i != m)
			{
				for (j = m - 1; j < n; j++)
				{
					zz[m - 1][j] = zz[i - 1][j];
					zz[i - 1][j] = 0.0;
				}
				zz[i - 1][m - 1] = 1.0;
			}
		}
	}

	void luinverse(double[][] inmat, double[][] imtrx, int size) throws IllegalArgumentException
	{
		int i, j, k, l, maxi=0, idx, ix, jx;
		double sum, tmp, maxb, aw;
		int[] index;
		double[] wk;
		double[][] omtrx;


		index = new int[size];
		omtrx = new double[size][size];

		/* copy inmat to omtrx */
		for (i = 0; i < size; i++)
		{
			for (j = 0; j < size; j++)
			{
				omtrx[i][j] = inmat[i][j];
			}
		}

		wk = new double[size];
		aw = 1.0;
		for (i = 0; i < size; i++)
		{
			maxb = 0.0;
			for (j = 0; j < size; j++)
			{
				if (Math.abs(omtrx[i][j]) > maxb)
				{
					maxb = Math.abs(omtrx[i][j]);
				}
			}
			if (maxb == 0.0)
			{
				/* Singular matrix */
				System.out.println("Singular matrix encountered");
				throw new IllegalArgumentException("Singular matrix");
			}
			wk[i] = 1.0/maxb;
		}
		for (j = 0; j < size; j++)
		{
			for (i = 0; i < j; i++)
			{
				sum = omtrx[i][j];
				for (k = 0; k < i; k++)
				{
					sum -= omtrx[i][k] * omtrx[k][j];
				}
				omtrx[i][j] = sum;
			}
			maxb = 0.0;
			for (i = j; i < size; i++)
			{
				sum = omtrx[i][j];
				for (k = 0; k < j; k++)
				{
					sum -= omtrx[i][k] * omtrx[k][j];
				}
				omtrx[i][j] = sum;
				tmp = wk[i] * Math.abs(sum);
				if (tmp >= maxb)
				{
					maxb = tmp;
					maxi = i;
				}
			}
			if (j != maxi)
			{
				for (k = 0; k < size; k++)
				{
					tmp = omtrx[maxi][k];
					omtrx[maxi][k] = omtrx[j][k];
					omtrx[j][k] = tmp;
				}
				aw = -aw;
				wk[maxi] = wk[j];
			}
			index[j] = maxi;
			if (omtrx[j][j] == 0.0)
			{
				omtrx[j][j] = MachineAccuracy.EPSILON;
			}
			if (j != size - 1)
			{
				tmp = 1.0 / omtrx[j][j];
				for (i = j + 1; i < size; i++)
				{
					omtrx[i][j] *= tmp;
				}
			}
		}
		for (jx = 0; jx < size; jx++)
		{
			for (ix = 0; ix < size; ix++)
			{
				wk[ix] = 0.0;
			}
			wk[jx] = 1.0;
			l = -1;
			for (i = 0; i < size; i++)
			{
				idx = index[i];
				sum = wk[idx];
				wk[idx] = wk[i];
				if (l != -1)
				{
					for (j = l; j < i; j++)
					{
						sum -= omtrx[i][j] * wk[j];
					}
				}
				else if (sum != 0.0)
				{
					l = i;
				}
				wk[i] = sum;
			}
			for (i = size - 1; i >= 0; i--)
			{
				sum = wk[i];
				for (j = i + 1; j < size; j++)
				{
					sum -= omtrx[i][j] * wk[j];
				}
				wk[i] = sum/omtrx[i][i];
			}
			for (ix = 0; ix < size; ix++)
			{
				imtrx[ix][jx] = wk[ix];
			}
		}
		wk = null;
		index = null;
		omtrx = null;
	}
}
