// LHCalculator.java
//
// (c) 1999-2003 PAL Development Core Team
//
// This package may be distributed under the
// terms of the Lesser GNU General Public License (LGPL)

package pal.eval;

/**
 * <p>Title: LHCalculator </p>
 * <p>Description: An LHCalculator object must be treated as a stateful, single threaded object that can be used
 * for calculating components in an overall likelihood calculation. </p>
 * <p>History<br>
 *  <ul>
 *    <li>25/10/2003 Added leaf handling interface </li>
 *    <li>30/3/2004 Changed certain methods to more intelligent ones (relating to posterior distribution of sites). Added abstract External class.
 *  </ul>
 * </p>
 * @author Matthew Goode
 * @version 1.0
 * @note needs to have the use of the word likelihood altered in certain cases (to conditional probability)
 *
 */
import pal.datatype.*;
import pal.substmodel.*;

public interface LHCalculator {
  /**
   * The External calculator does not maintain any state and is approapriate for
   * calculation where a store is provided
   */
  public static interface External extends java.io.Serializable {
    /**
     *
     * @param centerPattern the pattern information
     * @param leftConditionalProbabilities Implementations must not overwrite or change
     * @param rightConditionalProbabilities Implementations must not overwrite or change
     * @param resultStore Where to stick the created categoryPatternState information
     * @note calls to getLastConditionalProbabilities() does not have to be valid after call this method
     */
    public void calculateFlat( PatternInfo centerPattern, ConditionalProbabilityStore leftConditionalProbabilities, ConditionalProbabilityStore rightConditionalProbabilities, ConditionalProbabilityStore resultStore );

    /**
     *
     * @param distance
     * @param model
     * @param centerPattern the pattern information
     * @param leftConditionalProbabilities Implementations must not overwrite or change
     * @param rightConditionalProbabilities Implementations must not overwrite or change
     * @param resultStore Where to stick the created categoryPatternState information
     * @note calls to getLastConditionalProbabilities() does not have to be valid after call this method
     */
    public void calculateExtended( double distance, SubstitutionModel model,
                                   PatternInfo centerPattern,
                                   ConditionalProbabilityStore
                                   leftConditionalProbabilities,
                                   ConditionalProbabilityStore
                                   rightConditionalProbabilities,
                                   ConditionalProbabilityStore resultStore );

    /**
     * Extend the conditionals back in time by some distance, with some model
		 * @param distance The distance to extend by
     * @param model The model to use
     * @param conditionalProbabilities The probabilities to extend
     */
    public void calculateSingleExtendedDirect(
																		double distance, SubstitutionModel model,
																		int numberOfPatterns,
                                    ConditionalProbabilityStore conditionalProbabilities
                                  );
		/**
     * Extend the conditionals back in time by some distance, with some model
		 * @param distance The distance to extend by
     * @param model The model to use
     * @param baseConditionalProbabilities The probabilities to extend
     * @param resultConditionalProbabilities The probabilities to extend
     */
    public void calculateSingleExtendedIndirect(
																		double distance, SubstitutionModel model,
																		int numberOfPatterns,
                                    ConditionalProbabilityStore baseConditionalProbabilities,
                                    ConditionalProbabilityStore resultConditionalProbabilities
                                  );

    /**
     * Calculate the likelihood given two sub trees (left, right) and their flat (unextend) likeihood probabilities
     * @param distance
     * @param model
     * @param centerPattern the pattern information
     * @param leftFlatConditionalProbabilities
     * @param rightFlatConditionalProbabilities
		 * @param tempStore may be used internally to calculate likelihood
		 * @return the log likelihood
     */
    public double calculateLogLikelihood( double distance, SubstitutionModel model,
                                       PatternInfo centerPattern,
                                       ConditionalProbabilityStore leftFlatConditionalProbabilities,
                                       ConditionalProbabilityStore rightFlatConditionalProbabilities,
                                       ConditionalProbabilityStore tempStore
                                       );

    /**
     * Calculate the likelihood given two sub trees (left, right) and their extended likeihood probabilities
     * @param model
     * @param centerPattern the pattern information
     * @param leftConditionalProbabilities
     * @param rightConditionalProbabilities
     * @return the Log likelihood
     */
    public double calculateLogLikelihood( SubstitutionModel model, PatternInfo centerPattern,
                                       ConditionalProbabilityStore leftConditionalProbabilities,
                                       ConditionalProbabilityStore rightConditionalProbabilities );

    /**
     * Calculate the likelihood given the conditional probabilites at the root
     * @param model The substitution model used
     * @param patternWeights the weights of each pattern
		 * @param numberOfPatterns the number of patterns
     * @param conditionalProbabilities The conditionals
     * @return the Log likelihood
     */
    public double calculateLogLikelihoodSingle( SubstitutionModel model, int[] patternWeights, int numberOfPatterns,
                                       ConditionalProbabilityStore conditionalProbabilityStore);


    /**
     * Calculate the conditional probabilities of each pattern for each category
     * @param model
     * @param centerPattern the pattern information
     * @param leftConditionalProbabilities
     * @param rightConditionalProbabilities
     * @param categoryPatternLogLikelihoodStore after call will hold a matrix of values in the form [cat][pattern], where [cat][pattern] represents the site probability under a particular category/class, *not* multiplied by the category probability or pattern weights
     */
    public SiteDetails calculateSiteDetailsRooted( SubstitutionModel model,
      PatternInfo centerPattern,
      ConditionalProbabilityStore leftConditionalProbabilitiesStore,
      ConditionalProbabilityStore rightConditionalProbabilitiesStore
      );

		/**
     * Calculate the conditional probabilities of each pattern for each category
     * @param distance The distance between the two nodes
		 * @param model
     * @param centerPattern the pattern information
     * @param leftConditionalProbabilities
     * @param rightConditionalProbabilities
     * @param categoryPatternLogLikelihoodStore after call will hold a matrix of values in the form [cat][pattern], where [cat][pattern] represents the site probability under a particular category/class, *not* multiplied by the category probability or pattern weights
     */
		public SiteDetails calculateSiteDetailsUnrooted( double distance, SubstitutionModel model,
	    PatternInfo centerPattern,
      ConditionalProbabilityStore leftConditionalProbabilitiesStore,
      ConditionalProbabilityStore rightConditionalProbabilitiesStore,
			ConditionalProbabilityStore tempStore
    );
  } //End of class External
// =================================================================================================
// ================= Internal ======================================================================
// =================================================================================================
  /**
   * The Internal calculator may maintain state and is approapriate permanent attachment
   * to internal nodes of the tree structure
   */
  public static interface Internal {
    /**
     * calculate flat probability information (not extended over a branch).
     * @param centerPattern the pattern information
     * @param leftConditionalProbabilities Implementations should be allowed to overwrite in certain cases
     * @param rightConditionalProbabilities Implementations should be allowed to overwrite in certain cases
     * @return true if results built from cached information
     * @note An assumption may be made that after a call to this method the leftConditionals and rightConditionals are not used again!
     */
    public ConditionalProbabilityStore calculateFlat( PatternInfo centerPattern, ConditionalProbabilityStore leftConditionalProbabilities, ConditionalProbabilityStore rightConditionalProbabilities );

    /**
     *
     * @param distance
     * @param model
     * @param centerPattern the pattern information
     * @param leftConditionalProbabilities
     * @param rightConditionalProbabilities
     * @param modelChangedSinceLastCall this should be true if the substituion model has altered since the last call to this method on this particular object, false otherwise
     * @return resulting conditional probabilities
     * @note An assumption may be made that after a call to this method the leftConditionals and rightConditionals are not used again!
     */
    public ConditionalProbabilityStore calculateExtended( double distance, SubstitutionModel model, PatternInfo centerPattern, final ConditionalProbabilityStore leftConditionalProbabilities,
      final ConditionalProbabilityStore rightConditionalProbabilities, boolean modelChangedSinceLastCall );

    public ConditionalProbabilityStore calculatePostExtendedFlat( double distance, SubstitutionModel model, PatternInfo centerPattern, final ConditionalProbabilityStore leftConditionalProbabilities,
      final ConditionalProbabilityStore rightConditionalProbabilities, boolean modelChangedSinceLastCall );

  } //End of Internal

// =================================================================================================
// ================= Leaf ==========================================================================
// =================================================================================================
	/**
	 * A LHCalculator.Leaf object is attached to each leaf node and can be used to calculated conditional probabilities across the related branch.
	 * Allows for quick implementations as well as implementations that cope correctly with ambiguous characters
	 * @note Should not be made serializable!
	 */
	public static interface Leaf {
		public ConditionalProbabilityStore getFlatConditionalProbabilities();
		public ConditionalProbabilityStore getExtendedConditionalProbabilities( double distance, SubstitutionModel model, boolean modelChanged);
		/**
		 * Create a new Leaf calculator that has exactly the same properties as this one (but is different such that it may be used independently)
		 * @return a copy of this leaf calculator
		 */
		public Leaf getCopy();
	}

  public static interface Factory extends java.io.Serializable  {
    public Generator createSeries( int numberOfCategories, DataType dt );
  }

  public static interface Generator extends java.io.Serializable  {
		/**
		 * Create anew leaf calculator
		 * @param patternStateMatchup The sequence as reduced to patterns. This should just be one state per pattern.
		 * For example given a sequence [ 0, 1,0,1,3,0] a patternMatchup may be [0,1,3] (the first element is the first
		 * pattern, which is state 0, the second element is the second pattern which is 1, and the third element is the
		 * third pattern (novel pattern) which is state 3)
		 * @param numberOfPatterns The number of patterns in the patternStateMatchup array
		 * @return a leaf calculator object
		 */
    public Leaf createNewLeaf(int[] patternStateMatchup, int numberOfPatterns);

		public Leaf createNewLeaf(int[] patternStateMatchup, int numberOfPatterns, Generator parentGenerator );

		public External createNewExternal();

    public Internal createNewInternal();

		public boolean isAllowCaching();

    /**
     * An obscure method, primarily used by the High Accuracy calculator
     * @param parentGenerator A reference to an encompasing generator (that may for example
     * wish to impose it's own choice on the creation of ConditionalProbabilityStores)
     * @throws IllegalArgumentException Generator does not allow being a subserviant generator
     * @return
     */
    public External createNewExternal( Generator parentGenerator ) throws IllegalArgumentException;

    /**
     * An obscure method, primarily used by the High Accuracy calculator
     * @param parentGenerator A reference to an encompasing generator (that may for example
     * wish to impose it's own choice on the creation of ConditionalProbabilityStores)
     * @throws IllegalArgumentException Generator does not allow being a subserviant generator
     * @return
     */
    public Internal createNewInternal( Generator patentGenerator ) throws IllegalArgumentException;

    public ConditionalProbabilityStore createAppropriateConditionalProbabilityStore( boolean isForLeaf );

  }
// ======================================================================================
	public abstract class AbstractExternal {
	 		public final SiteDetails calculateSiteDetailsUnrooted(double distance,
      SubstitutionModel model,
      PatternInfo centerPattern,
      ConditionalProbabilityStore leftFlatConditionalProbabilities,
      ConditionalProbabilityStore rightFlatConditionalProbabilities,
      ConditionalProbabilityStore tempStore
			) {
			double[][] store = new double[model.getNumberOfTransitionCategories()][centerPattern.getNumberOfPatterns()];
			calculateCategoryPatternProbabilities(distance, model, centerPattern, leftFlatConditionalProbabilities,rightFlatConditionalProbabilities,tempStore, store);
		  double[] siteLikelihoods =
			  calculateSiteLikelihoods(
				  store,
					model.getTransitionCategoryProbabilities(),
					model.getNumberOfTransitionCategories(),
					centerPattern.getSitePatternMatchup(),centerPattern.getNumberOfSites()
				);
			return
			  SiteDetails.Utils.create(
				  store,false,model,
					centerPattern.getNumberOfPatterns(),
					centerPattern.getSitePatternMatchup(),
					centerPattern.getNumberOfSites(),
					siteLikelihoods
			  );
		}
		private final double[] calculateSiteLikelihoods( double[][] conditionals, final double[] catProbabilities, int numberOfCategories, int[] sitePatternMatchup,  int numberOfSites) {
		  final double[] siteLikeihoods = new double[numberOfSites];
			for(int site= 0 ; site < numberOfSites ; site++) {
				double total = 0;
				int pattern = sitePatternMatchup[site];
				for(int cat = 0 ; cat < numberOfCategories ; cat++) {
				  total+=catProbabilities[cat]*conditionals[cat][pattern];
				}
				siteLikeihoods[site] = total;
			}
			return siteLikeihoods;
		}
	  public final SiteDetails calculateSiteDetailsRooted(SubstitutionModel model,
      PatternInfo centerPattern,
      ConditionalProbabilityStore leftConditionalProbabilitiesStore,
      ConditionalProbabilityStore rightConditionalProbabilitiesStore) {
		  double[][] store = new double[model.getNumberOfTransitionCategories()][centerPattern.getNumberOfPatterns()];
			calculateCategoryPatternProbabilities(model,centerPattern,leftConditionalProbabilitiesStore,rightConditionalProbabilitiesStore,store);
			final  double[] siteLikelihoods =
			  calculateSiteLikelihoods(
				  store,
					model.getTransitionCategoryProbabilities(),
					model.getNumberOfTransitionCategories(),
					centerPattern.getSitePatternMatchup(),centerPattern.getNumberOfSites()
				);
			return SiteDetails.Utils.create(store,false,model,centerPattern.getNumberOfPatterns(),centerPattern.getSitePatternMatchup(),centerPattern.getNumberOfSites(),siteLikelihoods);
		}
		protected abstract void calculateCategoryPatternProbabilities(
				double distance, SubstitutionModel model, PatternInfo centerPattern,
        ConditionalProbabilityStore leftFlatConditionalProbabilities,
        ConditionalProbabilityStore rightFlatConditionalProbabilities,
        ConditionalProbabilityStore tempStore,
        double[][] categoryPatternLogLikelihoodStore
      );

    protected abstract void calculateCategoryPatternProbabilities(
				SubstitutionModel model, PatternInfo centerPattern,
        ConditionalProbabilityStore leftConditionalProbabilities,
        ConditionalProbabilityStore rightConditionalProbabilities,
        double[][] categoryPatternLikelihoodStore
			);
	}
}