#
# GENERATED WITH PDL::PP from lib/PDL/LinearAlgebra/Trans.pd! Don't modify!
#
package PDL::LinearAlgebra::Trans;

our @EXPORT_OK = qw( mexp mexpts mlog msqrt mpow 
			mcos msin mtan	msec mcsc mcot
			mcosh  msinh  mtanh  msech  mcsch  mcoth
			macos masin matan masec macsc macot 
			macosh masinh matanh masech macsch macoth
			sec asec sech asech 
			cot acot acoth coth mfun
			csc acsc csch acsch toreal pi geexp cgeexp ctrsqrt ctrfun );
our %EXPORT_TAGS = (Func=>\@EXPORT_OK);

use PDL::Core;
use PDL::Exporter;
use DynaLoader;


   our $VERSION = '0.433';
   our @ISA = ( 'PDL::Exporter','DynaLoader' );
   push @PDL::Core::PP, __PACKAGE__;
   bootstrap PDL::LinearAlgebra::Trans $VERSION;







#line 37 "lib/PDL/LinearAlgebra/Trans.pd"

use PDL::Core;
use PDL::Slices;
use PDL::Ops qw//;
use PDL::Math qw/floor/;
use PDL::MatrixOps qw/identity/;
use PDL::LinearAlgebra;
use PDL::LinearAlgebra::Real qw //;
use PDL::LinearAlgebra::Complex qw //;
use strict;

=encoding utf8

=head1 NAME

PDL::LinearAlgebra::Trans - Linear Algebra based transcendental functions for PDL

=head1 SYNOPSIS

 use PDL::LinearAlgebra::Trans;

 $a = random (100,100);
 $sqrt = msqrt($a);

=head1 DESCRIPTION

This module provides some transcendental functions for matrices.
Moreover it provides sec, asec, sech, asech, cot, acot, acoth, coth, csc,
acsc, csch, acsch. Beware, importing this module will overwrite the hidden
PDL routine sec. If you need to call it specify its origin module : PDL::Basic::sec(args)

=cut
#line 66 "lib/PDL/LinearAlgebra/Trans.pm"


=head1 FUNCTIONS

=cut






=head2 geexp

=for sig

  Signature: ([io]A(n,n);int deg();scale();[io]trace();int [o]ns();int [o]info(); int [t]ipiv(n); [t]wsp(wspn=CALC(3*$SIZE(n)*$SIZE(n))))

=for ref

Computes exp(t*A), the matrix exponential of a general matrix,
using the irreducible rational Pade approximation to the 
exponential function exp(x) = r(x) = (+/-)( I + 2*(q(x)/p(x)) ), 
combined with scaling-and-squaring and optionally normalization of the trace.
The algorithm is described in Roger B. Sidje (rbs.uq.edu.au)
"EXPOKIT: Software Package for Computing Matrix Exponentials".
ACM - Transactions On Mathematical Software, 24(1):130-156, 1998

     A:		On input argument matrix. On output exp(t*A).
		Use Fortran storage type.

     deg:	the degre of the diagonal Pade to be used. 
                a value of 6 is generally satisfactory. 

     scale:	time-scale (can be < 0). 

     trace:	on input, boolean value indicating whether or not perform
		a trace normalization. On output value used.

     ns:	on output number of scaling-squaring used. 

     info:	exit flag.
                      0 - no problem 
                     > 0 - Singularity in LU factorization when solving 
		     Pade approximation

=for example

  = random(5,5);
  = pdl(1);
 ->t->geexp(6,1,, ( = null), ( = null));

=for bad

geexp does not process bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*geexp = \&PDL::geexp;






=head2 cgeexp

=for sig

  Signature: (complex [io]A(n,n);int deg();scale();int trace();int [o]ns();int [o]info(); int [t] ipiv(n))

=for ref

Complex version of geexp. The value used for trace normalization is not returned.
The algorithm is described in Roger B. Sidje (rbs@maths.uq.edu.au)
"EXPOKIT: Software Package for Computing Matrix Exponentials".
ACM - Transactions On Mathematical Software, 24(1):130-156, 1998

=for bad

cgeexp does not process bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*cgeexp = \&PDL::cgeexp;






=head2 ctrsqrt

=for sig

  Signature: (complex [io]A(n,n);int uplo();complex [o] B(n,n);int [o]info())

=for ref

Root square of complex triangular matrix. Uses a recurrence of Björck and Hammarling.
(See Nicholas J. Higham. A new sqrtm for MATLAB. Numerical Analysis
Report No. 336, Manchester Centre for Computational Mathematics,
Manchester, England, January 1999. It's available at http://www.ma.man.ac.uk/~higham/pap-mf.html)
If uplo is true, A is lower triangular.

=for bad

ctrsqrt does not process bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*ctrsqrt = \&PDL::ctrsqrt;






=head2 ctrfun

=for sig

  Signature: (complex [io]A(n,n);int uplo();complex [o] B(n,n);int [o]info(); complex [t]diag(n); SV* func)

=for ref

Apply an arbitrary function to a complex triangular matrix. Uses a recurrence of Parlett.
If uplo is true, A is lower triangular.

=for bad

ctrfun does not process bad values.
It will set the bad-value flag of all output ndarrays if the flag is set for any of the input ndarrays.

=cut




*ctrfun = \&PDL::ctrfun;





#line 810 "lib/PDL/LinearAlgebra/Trans.pd"

my $pi;
BEGIN { $pi = pdl(3.1415926535897932384626433832795029) }
sub pi () { $pi->copy };

*sec = \&PDL::sec;
sub PDL::sec{1/cos($_[0])}

*csc = \&PDL::csc;
sub PDL::csc($) {1/sin($_[0])}

*cot = \&PDL::cot;
sub PDL::cot($) {1/(sin($_[0])/cos($_[0]))}

*sech = \&PDL::sech;
sub PDL::sech($){1/pdl($_[0])->cosh}

*csch = \&PDL::csch;
sub PDL::csch($) {1/pdl($_[0])->sinh}

*coth = \&PDL::coth;
sub PDL::coth($) {1/pdl($_[0])->tanh}

*asec = \&PDL::asec;
sub PDL::asec($) {my $tmp = 1/pdl($_[0]) ; $tmp->acos}

*acsc = \&PDL::acsc;
sub PDL::acsc($) {my $tmp = 1/pdl($_[0]) ; $tmp->asin}

*acot = \&PDL::acot;
sub PDL::acot($) {my $tmp = 1/pdl($_[0]) ; $tmp->atan}

*asech = \&PDL::asech;
sub PDL::asech($) {my $tmp = 1/pdl($_[0]) ; $tmp->acosh}

*acsch = \&PDL::acsch;
sub PDL::acsch($) {my $tmp = 1/pdl($_[0]) ; $tmp->asinh}

*acoth = \&PDL::acoth;
sub PDL::acoth($) {my $tmp = 1/pdl($_[0]) ; $tmp->atanh}

my $_tol = 9.99999999999999e-15;

sub toreal {
  $_tol = $_[1] if defined $_[1];
  return $_[0] if $_[0]->isempty or $_[0]->type->real;
  my ($min, $max, $tmp);
  ($min, $max) = $_[0]->im->minmax;
  return $_[0]->re->sever unless (abs($min) > $_tol || abs($max) > $_tol);
  $_[0];
}

=head2 mlog

=for ref

Return matrix logarithm of a square matrix.

=for usage

 PDL = mlog(PDL(A))

=for example

 my $a = random(10,10);
 my $log = mlog($a);

=cut

*mlog = \&PDL::mlog;
sub PDL::mlog {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol) = @_;
	mfun($m, sub{$_[0].=log $_[0]} , 0, $tol);
}

=head2 msqrt

=for ref

Return matrix square root (principal) of a square matrix.

=for usage

 PDL = msqrt(PDL(A))

=for example

 my $a = random(10,10);
 my $sqrt = msqrt($a);

=cut

*msqrt = \&PDL::msqrt;

sub PDL::msqrt {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol) = @_;
	$m = $m->r2C unless $m->_is_complex;
	my ($t, undef, $z, undef, $info) = $m->mschur(1);
	if ($info){
		warn "msqrt: Can't compute Schur form\n";
		return;		
	}
	($t, $info) = $t->ctrsqrt(0);
	if($info){
		warn "msqrt: can't compute square root\n";
		return;
	}
	$m = $z x $t x $z->t(1);
	return $m->_is_complex ? $m : toreal($m, $tol);
}

=head2 mexp

=for ref

Return matrix exponential of a square matrix.

=for usage

 PDL = mexp(PDL(A))

=for example

 my $a = random(10,10);
 my $exp = mexp($a);

=cut

*mexp = \&PDL::mexp;
sub PDL::mexp {
	&PDL::LinearAlgebra::_square;
	my ($m, $order, $trace) = @_;
	$trace = 1 unless defined $trace;
	$order = 6 unless defined $order;
	$m = $m->copy;
	$m->t->_call_method('geexp', $order, 1, $trace, my $ns = PDL->null, my $info = PDL->null);
	if ($info){
		warn "mexp: Error $info";
	}
	else{
		return $m;
	}
}

*mexpts = \&PDL::mexpts;
sub PDL::mexpts {
	&PDL::LinearAlgebra::_square;
	my ($m, $order, $tol) = @_;
	my @dims = $m->dims;
	my ($em, $trm);
	$order = 20 unless defined $order;
	$em = $m->_is_complex ? diag(r2C(ones($dims[1]))) : diag(ones($dims[1]));
	$trm = $em->copy;
	for (1..($order - 1)){
		$trm =  $trm x ($m / $_);
	        $em += $trm;
	}
	return $m->_is_complex ? $em : toreal($em, $tol);
}

=head2 mpow

=for ref

Return matrix power of a square matrix.

=for usage

 PDL = mpow(PDL(A), SCALAR(exponent))

=for example

 my $a = random(10,10);
 my $powered = mpow($a,2.5);

=cut

*mpow = \&PDL::mpow;
sub PDL::mpow {
	&PDL::LinearAlgebra::_square;
	my $di = $_[0]->dims_internal;
	my ($m, $power, $tol, $eigen) = @_;
	my @dims = $m->dims;
	my $ret;
	if (UNIVERSAL::isa($power,'PDL') and $power->dims > 1){
		my ($e, $v) = $m->meigen(0,1);
		$ret = $v * ($e**$power) x $v->minv;
	}
	elsif( 1/$dims[$di] * 1000 > abs($power)  and !$eigen){
		$ret = identity($dims[$di]);
		$ret = $ret->r2C if $m->_is_complex;
		my $pow = floor($power);
		$pow++ if ($power < 0 and $power != $pow);
                # TODO: what a beautiful thing (is it a game ?)
		for(my $i = 0; $i < abs($pow); $i++){$ret x= $m;}
		$ret = $ret->minv if $power < 0;
		if ($power = $power - $pow){
			if($power == 0.5){
				my $v = $m->msqrt;
				$ret = ($pow == 0) ? $v : $ret x $v;
			}
			else{
				my ($e, $v) = $m->meigen(0,1);
				$ret = ($pow == 0) ? ($v * $e**$power x $v->minv) : $ret->r2C x ($v * $e**$power x $v->minv);
			}			
		}
	}
	else{
		my ($e, $v) = $m->meigen(0,1);
		$ret = $v * $e**$power x $v->minv;
	}
	return $m->_is_complex ? $ret : toreal($ret, $tol);
}

=head2 mcos

=for ref

Return matrix cosine of a square matrix.

=for usage

 PDL = mcos(PDL(A))

=for example

 my $a = random(10,10);
 my $cos = mcos($a);

=cut

sub _i {
  i();
}

*mcos = \&PDL::mcos;
sub PDL::mcos {
	&PDL::LinearAlgebra::_square;
	my $m = shift;
	my $i = _i();
	return $m->_is_complex ? (mexp($i*$m) + mexp(- $i*$m)) / 2 : mexp($i*$m)->re->sever;
}

=head2 macos

=for ref

Return matrix inverse cosine of a square matrix.

=for usage

 PDL = macos(PDL(A))

=for example

 my $a = random(10,10);
 my $acos = macos($a);

=cut

*macos = \&PDL::macos;
sub PDL::macos {
	&PDL::LinearAlgebra::_square;
	my $di = $_[0]->dims_internal;
	my ($m, $tol) = @_;
	my @dims = $m->dims;
	my $id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	my $i = _i();
	my $ret = $i * mlog( ($m->r2C - $i * msqrt( ($id - $m x $m), $tol)));
	return $m->_is_complex ? $ret : toreal($ret, $tol);
}

=head2 msin

=for ref

Return matrix sine of a square matrix.

=for usage

 PDL = msin(PDL(A))

=for example

 my $a = random(10,10);
 my $sin = msin($a);

=cut

*msin = \&PDL::msin;
sub PDL::msin {
	&PDL::LinearAlgebra::_square;
	my $m = shift;
	my $i = _i();
	$m->_is_complex ? (mexp($i*$m) - mexp(- $i*$m))/(2*$i) : mexp($i*$m)->im->sever;
}

=head2 masin

=for ref

Return matrix inverse sine of a square matrix.

=for usage

 PDL = masin(PDL(A))

=for example

 my $a = random(10,10);
 my $asin = masin($a);

=cut

*masin = \&PDL::masin;
sub PDL::masin {
	&PDL::LinearAlgebra::_square;
	my $di = $_[0]->dims_internal;
	my ($m, $tol) = @_;
	my @dims = $m->dims;
	my $i = _i();
	my $id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	my $ret = (-$i) * mlog((($i*$m) + msqrt($id - $m x $m, $tol)));
	return $m->_is_complex ? $ret : toreal($ret, $tol);
}

=head2 mtan

=for ref

Return matrix tangent of a square matrix.

=for usage

 PDL = mtan(PDL(A))

=for example

 my $a = random(10,10);
 my $tan = mtan($a);

=cut

*mtan = \&PDL::mtan;
sub PDL::mtan {
	&PDL::LinearAlgebra::_square;
	my ($m, $id) = @_;
	my @dims = $m->dims;
	return scalar msolvex(mcos($m), msin($m),equilibrate=>1) unless $id;
	my $i = _i();
	if ($m->_is_complex){
		my $di = $_[0]->dims_internal;
		$id = identity($dims[$di])->r2C;
		$m = mexp(-2*$i*$m);
		return scalar msolvex( ($id + $m ),( (- $i) * ($id - $m)),equilibrate=>1);
	}
	else{
		$m = mexp($i * $m);
		return scalar $m->re->msolvex($m->im,equilibrate=>1);
	}
}

=head2 matan

=for ref

Return matrix inverse tangent of a square matrix.

=for usage

 PDL = matan(PDL(A))

=for example

 my $a = random(10,10);
 my $atan = matan($a);

=cut

*matan = \&PDL::matan;
sub PDL::matan {
	&PDL::LinearAlgebra::_square;
	my $di = $_[0]->dims_internal;
	my ($m, $tol) = @_;
	my @dims = $m->dims;
	my $i = _i();
	my $id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	my $ret = -$i/2 * mlog( scalar PDL::msolvex( ($id - $i*$m) ,($id + $i*$m),equilibrate=>1 ));
	return $m->_is_complex ? $ret : toreal($ret, $tol);
}

=head2 mcot

=for ref

Return matrix cotangent of a square matrix.

=for usage

 PDL = mcot(PDL(A))

=for example

 my $a = random(10,10);
 my $cot = mcot($a);

=cut

*mcot = \&PDL::mcot;
sub PDL::mcot {
	&PDL::LinearAlgebra::_square;
	my ($m, $id) = @_;
	my @dims = $m->dims;
	return scalar msolvex(msin($m),mcos($m),equilibrate=>1) unless $id;
	my $i = _i();
	if ($m->_is_complex){
		my $di = $_[0]->dims_internal;
		$id = identity($dims[$di])->r2C;
		$m = mexp(-2*$i*$m);
		return  scalar msolvex( ($id - $m), ($i * ($id + $m)), equilibrate=>1);
	}
	else{
		$m = mexp($i * $m);
		return scalar $m->im->msolvex($m->re,equilibrate=>1);
	}
}

=head2 macot

=for ref

Return matrix inverse cotangent of a square matrix.

=for usage

 PDL = macot(PDL(A))

=for example

 my $a = random(10,10);
 my $acot = macot($a);

=cut

*macot = \&PDL::macot;
sub PDL::macot {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol, $id) = @_;
	my ($inv, $info) = $m->minv;
	if ($info){
		warn "macot: singular matrix";
		return;
	}
	return matan($inv,$tol);
}

=head2 msec

=for ref

Return matrix secant of a square matrix.

=for usage

 PDL = msec(PDL(A))

=for example

 my $a = random(10,10);
 my $sec = msec($a);

=cut

*msec = \&PDL::msec;
sub PDL::msec {
	&PDL::LinearAlgebra::_square;
	my $m = shift;
	my $i = _i();
	return $m->_is_complex ? PDL::minv(mexp($i*$m) + mexp(- $i*$m)) * 2 : scalar PDL::minv(re(mexp($i*$m)));
}

=head2 masec

=for ref

Return matrix inverse secant of a square matrix.

=for usage

 PDL = masec(PDL(A))

=for example

 my $a = random(10,10);
 my $asec = masec($a);

=cut

*masec = \&PDL::masec;
sub PDL::masec {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol) = @_;
	my ($inv, $info) = $m->minv;
	if ($info){
		warn "masec: singular matrix";
		return;
	}
	return macos($inv,$tol);
}

=head2 mcsc

=for ref

Return matrix cosecant of a square matrix.

=for usage

 PDL = mcsc(PDL(A))

=for example

 my $a = random(10,10);
 my $csc = mcsc($a);

=cut

*mcsc = \&PDL::mcsc;
sub PDL::mcsc {
	&PDL::LinearAlgebra::_square;
	my $m = shift;
	my $i = _i();
	$m->_is_complex ? PDL::minv(mexp($i*$m) - mexp(- $i*$m)) * 2*$i : scalar PDL::minv(im(mexp($i*$m)));
}

=head2 macsc

=for ref

Return matrix inverse cosecant of a square matrix.

=for usage

 PDL = macsc(PDL(A))

=for example

 my $a = random(10,10);
 my $acsc = macsc($a);

=cut

*macsc = \&PDL::macsc;
sub PDL::macsc {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol) = @_;
	my ($inv, $info) = $m->minv;
	if ($info){
		warn "macsc: singular matrix";
		return;
	}
	return masin($inv,$tol);
}

=head2 mcosh

=for ref

Return matrix hyperbolic cosine of a square matrix.

=for usage

 PDL = mcosh(PDL(A))

=for example

 my $a = random(10,10);
 my $cos = mcosh($a);

=cut

*mcosh = \&PDL::mcosh;

sub PDL::mcosh {
	&PDL::LinearAlgebra::_square;
	my $m  = shift;
	( $m->mexp + mexp(-$m) )/2;
}

=head2 macosh

=for ref

Return matrix hyperbolic inverse cosine of a square matrix.

=for usage

 PDL = macosh(PDL(A))

=for example

 my $a = random(10,10);
 my $acos = macosh($a);

=cut

*macosh = \&PDL::macosh;

sub PDL::macosh {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol)  =  @_;
	my @dims = $m->dims;
	my $di = $_[0]->dims_internal;
	my $id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	my $ret = msqrt($m x $m - $id);
	$m = $m->r2C if $ret->getndims > @dims;
	mlog($m + $ret, $tol);
}

=head2 msinh

=for ref

Return matrix hyperbolic sine of a square matrix.

=for usage

 PDL = msinh(PDL(A))

=for example

 my $a = random(10,10);
 my $sinh = msinh($a);

=cut

*msinh = \&PDL::msinh;

sub PDL::msinh {
	&PDL::LinearAlgebra::_square;
	my $m  = shift;
	( $m->mexp - mexp(-$m) )/2;
}

=head2 masinh

=for ref

Return matrix hyperbolic inverse sine of a square matrix.

=for usage

 PDL = masinh(PDL(A))

=for example

 my $a = random(10,10);
 my $asinh = masinh($a);

=cut

*masinh = \&PDL::masinh;

sub PDL::masinh {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol)  = @_;
	my @dims = $m->dims;
	my $di = $_[0]->dims_internal;
	my $id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	my $ret = msqrt($m x $m + $id);
	$m = $m->r2C if $ret->getndims > @dims;	
	mlog(($m + $ret), $tol);
}

=head2 mtanh

=for ref

Return matrix hyperbolic tangent of a square matrix.

=for usage

 PDL = mtanh(PDL(A))

=for example

 my $a = random(10,10);
 my $tanh = mtanh($a);

=cut

*mtanh = \&PDL::mtanh;

sub PDL::mtanh {
	&PDL::LinearAlgebra::_square;
	my ($m, $id)  = @_;
	my @dims = $m->dims;
	return scalar msolvex(mcosh($m), msinh($m),equilibrate=>1) unless $id;
	my $di = $_[0]->dims_internal;
	$id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	$m = mexp(-2*$m);
	return  scalar msolvex( ($id + $m ),($id - $m), equilibrate=>1);
}

=head2 matanh

=for ref

Return matrix hyperbolic inverse tangent of a square matrix.

=for usage

 PDL = matanh(PDL(A))

=for example

 my $a = random(10,10);
 my $atanh = matanh($a);

=cut

*matanh = \&PDL::matanh;

sub PDL::matanh {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol)  = @_;
	my @dims = $m->dims;
	my $di = $_[0]->dims_internal;
	my $id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	mlog( scalar msolvex( ($id - $m ),($id + $m),equilibrate=>1), $tol ) / 2;
}

=head2 mcoth

=for ref

Return matrix hyperbolic cotangent of a square matrix.

=for usage

 PDL = mcoth(PDL(A))

=for example

 my $a = random(10,10);
 my $coth = mcoth($a);

=cut

*mcoth = \&PDL::mcoth;

sub PDL::mcoth {
	&PDL::LinearAlgebra::_square;
	my ($m, $id)  = @_;
	my @dims = $m->dims;
	scalar msolvex(msinh($m), mcosh($m),equilibrate=>1) unless $id;
	my $di = $_[0]->dims_internal;
	$id = identity($dims[$di]); $id = $id->r2C if $m->_is_complex;
	$m = mexp(-2*$m);
	return  scalar msolvex( ($id - $m ),($id + $m),equilibrate=>1);
}

=head2 macoth

=for ref

Return matrix hyperbolic inverse cotangent of a square matrix.

=for usage

 PDL = macoth(PDL(A))

=for example

 my $a = random(10,10);
 my $acoth = macoth($a);

=cut

*macoth = \&PDL::macoth;

sub PDL::macoth {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol)  = @_;
	my ($inv, $info) = $m->minv;
	if ($info){
		warn "macoth: singular matrix";
		return;
	}
	return matanh($inv,$tol);
}

=head2 msech

=for ref

Return matrix hyperbolic secant of a square matrix.

=for usage

 PDL = msech(PDL(A))

=for example

 my $a = random(10,10);
 my $sech = msech($a);

=cut

*msech = \&PDL::msech;

sub PDL::msech {
	&PDL::LinearAlgebra::_square;
	my $m  = shift;
	PDL::minv( $m->mexp + mexp(-$m) ) * 2;
}

=head2 masech

=for ref

Return matrix hyperbolic inverse secant of a square matrix.

=for usage

 PDL = masech(PDL(A))

=for example

 my $a = random(10,10);
 my $asech = masech($a);

=cut

*masech = \&PDL::masech;

sub PDL::masech {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol)  = @_;
	my ($inv, $info) = $m->minv;
	if ($info){
		warn "masech: singular matrix";
		return;
	}
	return macosh($inv,$tol);
}

=head2 mcsch

=for ref

Return matrix hyperbolic cosecant of a square matrix.

=for usage

 PDL = mcsch(PDL(A))

=for example

 my $a = random(10,10);
 my $csch = mcsch($a);

=cut

*mcsch = \&PDL::mcsch;

sub PDL::mcsch {
	&PDL::LinearAlgebra::_square;
	my $m  = shift;
	PDL::minv( $m->mexp - mexp(-$m) ) * 2;
}

=head2 macsch

=for ref

Return matrix hyperbolic inverse cosecant of a square matrix.

=for usage

 PDL = macsch(PDL(A))

=for example

 my $a = random(10,10);
 my $acsch = macsch($a);

=cut

*macsch = \&PDL::macsch;

sub PDL::macsch {
	&PDL::LinearAlgebra::_square;
	my ($m, $tol)  = @_;
	my ($inv, $info) = $m->minv;
	if ($info){
		warn "macsch: singular matrix";
		return;
	}
	return masinh($inv,$tol);
}

=head2 mfun

=for ref

Return matrix function of second argument of a square matrix.
Function will be applied on a complex ndarray.

=for usage

 PDL = mfun(PDL(A),'cos')

=for example

 my $a = random(10,10);
 my $fun = mfun($a,'cos');
 sub sinbycos2{
	$_[0]->set_inplace(0);
	$_[0] .= $_[0]->Csin/$_[0]->Ccos**2;
 }
 # Try diagonalization
 $fun = mfun($a, \&sinbycos2,1);
 # Now try Schur/Parlett
 $fun = mfun($a, \&sinbycos2);
 # Now with function.
 scalar msolve($a->mcos->mpow(2), $a->msin);

=cut

*mfun = \&PDL::mfun;

sub PDL::mfun {
	&PDL::LinearAlgebra::_square;
	my ($m, $method, $diag, $tol)  = @_;
	my @dims = $m->dims;
	if ($diag){
		my ($e, $v) = $m->meigen(0,1);
		my ($inv, $info) = $v->minv;
		unless ($info){
			eval {$v = ($v * $e->$method) x $v->minv;};
			if ($@){
				warn "mfun: Error $@\n";
				return;
			}
		}
		else{
			warn "mfun: Non invertible matrix in computation of $method\n";
			return;
		}
		return $m->_is_complex ? $v : toreal($v, $tol);
	}
	else{
		$m = $m->r2C unless $m->_is_complex;
		my ($t, undef, $z, undef, $info) = $m->mschur(1);
		if ($info){
			warn "mfun: Can't compute Schur form\n";
			return;		
		}
		($t, $info) = $t->ctrfun(0,$method);
		if($info){
			warn "mfun: Can't compute $method\n";
			return;
		}
		$m = $z x $t x $z->t(1);
		return $m->_is_complex ? $m : toreal($m, $tol);
	}
}

=head1 TODO

Improve error return and check singularity.
Improve (msqrt,mlog) / r2C

=head1 AUTHOR

Copyright (C) Grégory Vanuxem 2005-2018.

This library is free software; you can redistribute it and/or modify
it under the terms of the Perl Artistic License as in the file Artistic_2
in this distribution.

=cut
#line 1209 "lib/PDL/LinearAlgebra/Trans.pm"

# Exit with OK status

1;
