Sometimes, when a new domain is to be created it may come handy to know the capabilities of the hypervisor so the correct combination of devices and drivers is used. For example, when management application is considering the mode for a host device's passthrough there are several options depending not only on host, but on hypervisor in question too. If the hypervisor is qemu then it needs to be more recent to support VFIO, while legacy KVM is achievable just fine with older qemus.
The main difference between
virConnectGetCapabilities
and the emulator capabilities API is, the former one aims more on
the host capabilities (e.g. NUMA topology, security models in
effect, etc.) while the latter one specializes on the hypervisor
capabilities.
While the Driver Capabilities provides the host capabilities (e.g NUMA topology, security models in effect, etc.), the Domain Capabilities provides the hypervisor specific capabilities for Management Applications to query and make decisions regarding what to utilize.
The Domain Capabilities can provide information such as the correct combination of devices and drivers that are supported. Knowing which host and hypervisor specific options are available or supported would allow the management application to choose an appropriate mode for a pass-through host device as well as which adapter to utilize.
A new query interface was added to the virConnect API's to retrieve the XML listing of the set of domain capabilities (Since 1.2.7):
virConnectGetDomainCapabilities
The root element that emulator capability XML document starts with has
name domainCapabilities. It contains at least four direct
child elements:
<domainCapabilities> <path>/usr/bin/qemu-system-x86_64</path> <domain>kvm</domain> <machine>pc-i440fx-2.1</machine> <arch>x86_64</arch> ... </domainCapabilities>
pathdomainmachinearchBefore any devices capability occurs, there might be a info on domain wide capabilities, e.g. virtual CPUs:
<domainCapabilities> ... <vcpu max='255'/> ... </domainCapabilities>
vcpuSometimes users might want to tweak some BIOS knobs or use
UEFI. For cases like that, os
element exposes what values can be passed to its children.
<domainCapabilities>
...
<os supported='yes'>
<loader supported='yes'>
<value>/usr/share/OVMF/OVMF_CODE.fd</value>
<enum name='type'>
<value>rom</value>
<value>pflash</value>
</enum>
<enum name='readonly'>
<value>yes</value>
<value>no</value>
</enum>
</loader>
</os>
...
<domainCapabilities>
For the loader element, the following can occur:
valuetyperom) or
an UEFI binary (pflash). This refers to
type attribute of the <loader/>
element.readonlyreadonly attribute of the
<loader/> element.
The cpu element exposes options usable for configuring
guest CPUs.
<domainCapabilities>
...
<cpu>
<mode name='host-passthrough' supported='yes'/>
<mode name='host-model' supported='yes'>
<model fallback='allow'>Broadwell</model>
<vendor>Intel</vendor>
<feature policy='disable' name='aes'/>
<feature policy='require' name='vmx'/>
</mode>
<mode name='custom' supported='yes'>
<model usable='no'>Broadwell</model>
<model usable='yes'>Broadwell-noTSX</model>
<model usable='no'>Haswell</model>
...
</mode>
</cpu>
...
<domainCapabilities>
Each CPU mode understood by libvirt is described with a
mode element which tells whether the particular mode
is supported and provides (when applicable) more details about it:
host-passthroughhost-modelhost-model is supported by the hypervisor, the
mode describes the guest CPU which will be used when
starting a domain with host-model CPU. The hypervisor
specifics (such as unsupported CPU models or features, machine type,
etc.) may be accounted for in this guest CPU specification and thus
the CPU can be different from the one shown in host capabilities XML.
This is indicated by the fallback attribute of the
model sub element: allow means not all
specifics were accounted for and thus the CPU a guest will see may
be different; forbid indicates that the CPU a guest will
see should match this CPU definition.
custommode element contains a list of supported CPU
models, each described by a dedicated model element.
The usable attribute specifies whether the model can
be used on the host. A special value unknown indicates
libvirt does not have enough information to provide the usability
data.
Another set of XML elements describe the supported devices and their
capabilities. All devices occur as children of the main
devices element.
<domainCapabilities>
...
<devices>
<disk supported='yes'>
<enum name='diskDevice'>
<value>disk</value>
<value>cdrom</value>
<value>floppy</value>
<value>lun</value>
</enum>
...
</disk>
<hostdev supported='no'/>
</devices>
</domainCapabilities>
Reported capabilities are expressed as an enumerated list of available
options for each of the element or attribute. For example, the
<disk/> element has an attribute device which can
support the values disk, cdrom,
floppy, or lun.
Disk capabilities are exposed under the disk element. For
instance:
<domainCapabilities>
...
<devices>
<disk supported='yes'>
<enum name='diskDevice'>
<value>disk</value>
<value>cdrom</value>
<value>floppy</value>
<value>lun</value>
</enum>
<enum name='bus'>
<value>ide</value>
<value>fdc</value>
<value>scsi</value>
<value>virtio</value>
<value>xen</value>
<value>usb</value>
<value>uml</value>
<value>sata</value>
<value>sd</value>
</enum>
</disk>
...
</devices>
</domainCapabilities>
diskDevicedevice attribute of the <disk/>
element.busbus attribute of the <target/>
element for a <disk/>.Graphics device capabilities are exposed under the
graphics element. For instance:
<domainCapabilities>
...
<devices>
<graphics supported='yes'>
<enum name='type'>
<value>sdl</value>
<value>vnc</value>
<value>spice</value>
</enum>
</graphics>
...
</devices>
</domainCapabilities>
typetype attribute of the <graphics/>
element.Video device capabilities are exposed under the
video element. For instance:
<domainCapabilities>
...
<devices>
<video supported='yes'>
<enum name='modelType'>
<value>vga</value>
<value>cirrus</value>
<value>vmvga</value>
<value>qxl</value>
<value>virtio</value>
</enum>
</video>
...
</devices>
</domainCapabilities>
modelTypetype attribute of the
<video><model> element.Some host devices can be passed through to a guest (e.g. USB, PCI and SCSI). Well, only if the following is enabled:
<domainCapabilities>
...
<devices>
<hostdev supported='yes'>
<enum name='mode'>
<value>subsystem</value>
<value>capabilities</value>
</enum>
<enum name='startupPolicy'>
<value>default</value>
<value>mandatory</value>
<value>requisite</value>
<value>optional</value>
</enum>
<enum name='subsysType'>
<value>usb</value>
<value>pci</value>
<value>scsi</value>
</enum>
<enum name='capsType'>
<value>storage</value>
<value>misc</value>
<value>net</value>
</enum>
<enum name='pciBackend'>
<value>default</value>
<value>kvm</value>
<value>vfio</value>
<value>xen</value>
</enum>
</hostdev>
</devices>
</domainCapabilities>
modemode attribute of the <hostdev/>
element.startupPolicystartupPolicy attribute of the
<hostdev/> element.subsysTypetype attribute of the <hostdev/>
element in case of mode="subsystem".capsTypetype attribute of the <hostdev/>
element in case of mode="capabilities".pciBackendname attribute of the <driver/>
element.One more set of XML elements describe the supported features and
their capabilities. All features occur as children of the main
features element.
<domainCapabilities>
...
<features>
<gic supported='yes'>
<enum name='version'>
<value>2</value>
<value>3</value>
</enum>
</gic>
</features>
</domainCapabilities>
Reported capabilities are expressed as an enumerated list of
possible values for each of the elements or attributes. For example, the
gic element has an attribute version which can
support the values 2 or 3.
For information about the purpose of each feature, see the relevant section in the domain XML documentation.
GIC capabilities are exposed under the gic element.
versionversion attribute of the
gic element.