# (C) Copyright 2017- ECMWF.
#
# This software is licensed under the terms of the Apache Licence Version 2.0
# which can be obtained at http://www.apache.org/licenses/LICENSE-2.0.
#
# In applying this licence, ECMWF does not waive the privileges and immunities
# granted to it by virtue of its status as an intergovernmental organisation
# nor does it submit to any jurisdiction.

import os
import numpy as np
import datetime
import glob
import pickle
import pytest
import pandas as pd
from setuptools import find_namespace_packages
import xarray as xr

import metview as mv
from metview import bindings
from metview.metviewpy import utils


PATH = os.path.dirname(__file__)
MAX_VALUE = 316.06060791015625
MIN_VALUE = 206.93560791015625
SEMI_EQUATOR = 20001600.0
MAX_SQRT_GPT = 16.867127793433
MAX_GPT = 284.5


def metview_version():
    version = mv.version_info()
    return version["metview_version"]


def supports_float32_vectors():
    return metview_version() >= 50200


def test_names():
    assert mv.dictionary.__name__ == mv.dictionary.__qualname__ == "dictionary"
    assert mv.dictionary.__module__ == "metview"


def file_in_testdir(filename):
    return os.path.join(PATH, filename)


def get_test_data(filename):
    d_path = os.path.join(PATH, "data")
    os.makedirs(d_path, mode=0o755, exist_ok=True)
    f_path = os.path.join(d_path, filename)
    if not os.path.exists(f_path):
        URL = "https://get.ecmwf.int/repository/test-data/metview/tests"
        utils.simple_download(url=f"{URL}/{filename}", target=f_path)
    return f_path


def field_equal(f1, f2, **kwargs):
    v1 = f1.values()
    v2 = f2.values()
    np.testing.assert_allclose(v1, v2, **kwargs)


def fieldset_equal(fs1, fs2, rtol=1e-7):
    assert len(fs1) == len(fs2)
    for i in range(len(fs1)):
        field_equal(fs1[i], fs2[i], rtol=rtol, err_msg=f"i={i}")


def test_version_info():
    out = mv.version_info()
    assert "metview_version" in out


def test_version_info_python():
    out = mv.version_info()
    print(out)
    assert "metview_python_version" in out
    assert isinstance(out["metview_python_version"], str)


# describe() is now a method/function on Fieldsets, and calling it
# on a string does not work - we may want to re-add this in the future
# def test_describe():
#     mv.describe("type")


def test_definitions():
    plotting_enabled = mv.is_feature_available("plotting") == 1
    mcont_def = mv.mcont({"legend": True})
    msymb_def = mv.msymb({"symbol_type": "marker"})
    mcoast_def = mv.mcoast({"map_coastline_land_shade": True})
    mobs_def = mv.mobs({"obs_temperature": False})
    mtext_def = mv.mtext({"text_font_size": "0.80"})
    geoview_def = mv.geoview({"map_projection": "polar_stereographic"})
    if plotting_enabled:
        ps_output_def = mv.ps_output({"output_name": "test"})
    assert mcont_def["LEGEND"] == "ON"
    assert msymb_def["SYMBOL_TYPE"] == "MARKER"
    assert mcoast_def["MAP_COASTLINE_LAND_SHADE"] == "ON"
    assert mobs_def["OBS_TEMPERATURE"] == "OFF"
    assert mtext_def["TEXT_FONT_SIZE"] == 0.8
    assert geoview_def["MAP_PROJECTION"] == "POLAR_STEREOGRAPHIC"
    if plotting_enabled:
        assert ps_output_def["OUTPUT_NAME"] == "test"


def test_definitions_as_dict():
    mcont_def = mv.mcont(
        {
            "legend": True,
            "contour_line_thickness": 7,
            "contour_level_selection_type": "level_list",
            "contour_level_list": [5, 7, 8.8, 9],
            "contour_hi_text": "My high text",
            "CONTOUR_MIN_LEVEL": 4.9,
        }
    )
    mcont_dict = mcont_def.copy()
    assert mcont_dict["LEGEND"] == "ON"
    assert mcont_dict["CONTOUR_LINE_THICKNESS"] == 7
    assert mcont_dict["CONTOUR_LEVEL_SELECTION_TYPE"] == "LEVEL_LIST"
    assert mcont_dict["CONTOUR_LEVEL_LIST"] == [5, 7, 8.8, 9]
    assert mcont_dict["CONTOUR_HI_TEXT"] == "My high text"
    assert mcont_dict["CONTOUR_MIN_LEVEL"] == 4.9


def test_definitions_as_args():
    mcont_def = mv.mcont(
        legend=True,
        contour_line_thickness=7,
        contour_level_selection_type="level_list",
        contour_level_list=[5, 7, 8.8, 9],
        contour_hi_text="My high text",
        CONTOUR_MIN_LEVEL=4.9,
    )
    mcont_dict = mcont_def.copy()
    assert mcont_dict["LEGEND"] == "ON"
    assert mcont_def["CONTOUR_LINE_THICKNESS"] == 7
    assert mcont_def["CONTOUR_LEVEL_SELECTION_TYPE"] == "LEVEL_LIST"
    assert mcont_def["CONTOUR_LEVEL_LIST"] == [5, 7, 8.8, 9]
    assert mcont_def["CONTOUR_HI_TEXT"] == "My high text"
    assert mcont_def["CONTOUR_MIN_LEVEL"] == 4.9


def test_modify_request():
    c = mv.mcont(
        {
            "CONTOUR_LINE_COLOUR": "PURPLE",
            "CONTOUR_LINE_THICKNESS": 3,
            "CONTOUR_HIGHLIGHT": False,
        }
    )
    c["CONTOUR_linE_COLOUR"] = "GREEN"
    c["CONTOUR_linE_style"] = "dash"
    assert c["CONTOUR_LINE_THICKNESS"] == 3
    assert c["CONTOUR_LINE_COLOUR"] == "GREEN"
    assert c["CONTOUR_LINE_STYLE"] == "DASH"
    assert c["CONTour_LINE_STYLE"] == "DASH"
    # for visual testing
    # mv.setoutput(mv.png_output(output_name="ff"))
    # a = mv.read(os.path.join(PATH, "test.grib"))
    # mv.plot(a, c)


def test_modify_request_via_update():
    c = mv.mcont(
        {
            "CONTOUR_LINE_COLOUR": "PURPLE",
            "CONTOUR_LINE_THICKNESS": 3,
            "CONTOUR_HIGHLIGHT": False,
        }
    )
    new_params = {"CONTOUR_linE_COLOUR": "OliVE", "CONTOUR_linE_style": "DOT"}
    c.update(new_params)
    assert c["CONTOUR_LINE_THICKNESS"] == 3
    assert c["CONTOUR_LINE_COLOUR"] == "OliVE"
    assert c["CONTOUR_LINE_STYLE"] == "DOT"
    assert c["CONTour_LINE_STYLE"] == "DOT"
    # for visual testing
    # mv.setoutput(mv.png_output(output_name="gg"))
    # a = mv.read(os.path.join(PATH, "test.grib"))
    # mv.plot(a, c)


def test_modify_embedded_request_via_update():
    coastlines = mv.mcoast(
        map_coastline_thickness=3,
        map_coastline_land_shade="on",
        map_coastline_land_shade_colour="cyan",
    )

    gv = mv.geoview(
        map_area_definition="corners",
        area=[17.74, -35.85, 81.57, 63.93],
        coastlines=coastlines,
    )

    with pytest.raises(IndexError):
        gv.update({"MAP_COASTLINE_land_SHADE_COLOUR": "yellow"}, sub="XXCOASTlines")
    with pytest.raises(IndexError):
        gv.update({"MAP_COASTLINE_land_SHADE_COLOUR": "yellow"}, sub=["a", 2])

    gv.update({"MAP_COASTLINE_land_SHADE_COLOUR": "green"}, sub="COASTlines")
    assert gv["map_area_definition"] == "CORNERS"
    c = gv["COAStLINES"]
    assert c["MAP_COASTLINE_LAND_SHADE_COLOUR"] == "green"
    assert c["map_coastline_land_shade_colour"] == "green"

    # for visual testing
    # mv.setoutput(mv.png_output(output_name="gg"))
    # a = mv.read(os.path.join(PATH, "test.grib"))
    # mv.plot(a, gv)


def test_read_png():
    p = mv.read(file_in_testdir("MVPROFILEVIEW.png"))
    assert p.get_verb() == "PNG"


def test_print():
    mv.print("Start ", 7, 1, 3, " Finished!")
    mv.print(6, 2, " Middle ", 6)


def test_lowercase():
    a = mv.lowercase("MetViEw")
    assert a == "metview"


# def test_lists():
#     m= mv.mcont(contour_level_selection_type = 'level_list', contour_level_list = [1, 2, 6])
#     print('M: ', m)
# test_lists()


def test_create_list():
    inlist = [1, 5, 6, 5, 1, 9, 18]
    outlist = mv.list(*inlist)
    assert outlist == inlist


def test_create_empty_list():
    outlist = mv.list()
    assert outlist == []


def test_create_list_from_tuple():
    intuple = (10, 50, 60, 50, 1.1, 90)
    outlist = mv.list(*intuple)
    assert outlist == list(intuple)


def test_list_unique():
    inlist = [1, 5, 6, 5, 1, 9]
    ulist = mv.unique(inlist)
    assert ulist == [1, 5, 6, 9]


def test_list_sort():
    s = [4, 7, 2, 3, 4, 9, 0]
    so = mv.sort(s)
    assert so == [0, 2, 3, 4, 4, 7, 9]


def test_list_sort_indices():
    s = [4, 7, 2, 3, 4, 9, 0]
    soi = mv.sort_indices(s)
    assert soi == [6, 2, 3, 0, 4, 1, 5]


def test_list_find():
    s = [4, 7, 2, 3, 4, 9, 0]
    f = mv.find(s, 2)
    assert f == 2
    f = mv.find(s, 4)
    assert f == 0
    f = mv.find(s, 4, "all")
    assert f == [0, 4]


def test_tuple_unique():
    intuple = (3, 2, 2, 7, 3, 1.2, 2.1, 1.2)
    ulist = mv.unique(intuple)
    assert ulist == [3, 2, 7, 1.2, 2.1]


def test_read():
    gg = mv.read({"SOURCE": file_in_testdir("test.grib"), "GRID": 80})
    assert mv.grib_get_string(gg, "typeOfGrid") == "regular_gg"


def test_read_filter_1():
    mls = mv.read(
        source=file_in_testdir("ml_data.grib"), param="t", levelist=[5, 49, 101]
    )
    assert mv.grib_get_long(mls, "level") == [5, 49, 101]


def test_read_filter_2():
    tuv_all_levs = mv.read(file_in_testdir("tuv_pl.grib"))
    u_all_levs = mv.read(data=tuv_all_levs, param="u")
    assert mv.grib_get_long(u_all_levs, "level") == [1000, 850, 700, 500, 400, 300]
    assert mv.grib_get_string(u_all_levs, "shortName") == ["u", "u", "u", "u", "u", "u"]
    u_2levs = mv.read(data=u_all_levs, levelist=[700, 400])
    assert mv.grib_get_long(u_2levs, "level") == [700, 400]


def test_write():
    gg = mv.read({"SOURCE": file_in_testdir("test.grib"), "GRID": 80})
    regridded_grib = mv.write(file_in_testdir("test_gg_grid.grib"), gg)
    assert regridded_grib == 0
    os.remove(file_in_testdir("test_gg_grid.grib"))


def test_write_method():
    gg = mv.read({"SOURCE": file_in_testdir("test.grib"), "GRID": 80})
    regridded_grib = gg.write(file_in_testdir("test_gg_grid_method.grib"))
    assert regridded_grib == 0
    gg2 = mv.read(file_in_testdir("test_gg_grid_method.grib"))
    assert mv.grib_get_string(gg2, "shortName") == "2t"
    os.remove(file_in_testdir("test_gg_grid_method.grib"))


def test_class_():
    # these generate warnings, but if they pass then they show that the conversion
    # from class_ to class is working
    gg = mv.read(file_in_testdir("test.grib"))
    c = mv.read(data=gg, class_="od")
    assert mv.type(c) == "fieldset"
    c = mv.read({"data": gg, "class_": "od"})
    assert mv.type(c) == "fieldset"
    c = mv.read({"data": gg, "class": "od"})
    assert mv.type(c) == "fieldset"


TEST_FIELDSET = mv.read(os.path.join(PATH, "test.grib"))


def test_type():
    out = mv.type(TEST_FIELDSET)
    assert out == "fieldset"


# def test_retrieve():
#     tccp = mv.retrieve({
#         'levtype': 'sfc',
#         'param': 'tccp',
#         'grid': 'o640'  # octahedral grid (a specific form of a reduced Gaussian grid)
#     })
#     assert mv.type(tccp)== 'fieldset'


def test_count():
    out = mv.count(TEST_FIELDSET)
    assert out == 1


def test_maxvalue():
    maximum = mv.maxvalue(TEST_FIELDSET)
    assert np.isclose(maximum, MAX_VALUE)


def test_accumulate():
    all_missing = mv.read(file_in_testdir("all_missing_vals.grib"))
    out = mv.accumulate(all_missing)
    assert out is None


def test_add():
    plus_two = TEST_FIELDSET + 2
    maximum = mv.maxvalue(plus_two)
    assert np.isclose(maximum, MAX_VALUE + 2)


def test_add_reverse():
    plus_two = 2 + TEST_FIELDSET
    maximum = mv.maxvalue(plus_two)
    assert np.isclose(maximum, MAX_VALUE + 2)


def test_add_fieldsets():
    sum = TEST_FIELDSET + TEST_FIELDSET
    maximum = mv.maxvalue(sum)
    assert np.isclose(maximum, MAX_VALUE + MAX_VALUE)


def test_sub():
    minus_two = TEST_FIELDSET - 2
    maximum = mv.maxvalue(minus_two)
    assert np.isclose(maximum, MAX_VALUE - 2)


def test_sub_reverse():
    minus_two = 2 - TEST_FIELDSET
    minimum = mv.minvalue(minus_two)
    assert np.isclose(minimum, 2 - MAX_VALUE)


def test_sub_fieldsets():
    sub = TEST_FIELDSET - TEST_FIELDSET
    maximum = mv.maxvalue(sub)
    assert np.isclose(maximum, 0)


def test_sqrt():
    sqrt_fd = mv.sqrt(TEST_FIELDSET)
    maximum = mv.maxvalue(sqrt_fd)
    assert np.isclose(maximum, np.sqrt(MAX_VALUE))


def test_product():
    times_two = TEST_FIELDSET * 2
    maximum = mv.maxvalue(times_two)
    assert np.isclose(maximum, MAX_VALUE * 2)


def test_product_reverse():
    times_two = 2 * TEST_FIELDSET
    maximum = mv.maxvalue(times_two)
    assert np.isclose(maximum, MAX_VALUE * 2)


def test_product_fieldsets():
    prod = TEST_FIELDSET * TEST_FIELDSET
    maximum = mv.maxvalue(prod)
    assert np.isclose(maximum, MAX_VALUE * MAX_VALUE)


def test_division():
    divided_two = TEST_FIELDSET / 2
    maximum = mv.maxvalue(divided_two)
    assert np.isclose(maximum, MAX_VALUE / 2)


def test_division_via_function():
    divided_two = mv.div(TEST_FIELDSET, 2)
    maximum = mv.maxvalue(divided_two)
    assert np.isclose(maximum, MAX_VALUE / 2)


def test_division_reverse():
    divided_two = 2 / TEST_FIELDSET
    minimum = mv.minvalue(divided_two)
    assert np.isclose(minimum, 2 / MAX_VALUE)


def test_division_reverse_via_function():
    divided_two = mv.div(2, TEST_FIELDSET)
    minimum = mv.minvalue(divided_two)
    assert np.isclose(minimum, 2 / MAX_VALUE)


def test_division_fieldsets():
    div = TEST_FIELDSET / TEST_FIELDSET
    maximum = mv.maxvalue(div)
    assert np.isclose(maximum, 1)


def test_power():
    raised_two = TEST_FIELDSET**2
    maximum = mv.maxvalue(raised_two)
    assert np.isclose(maximum, MAX_VALUE**2)


def test_power_reverse():
    mask = TEST_FIELDSET > 290
    FS_3_AND_4 = (mask * 3) + (1 - mask) * 4
    raised = 2**FS_3_AND_4
    minimum = mv.minvalue(raised)
    maximum = mv.maxvalue(raised)
    assert np.isclose(minimum, 2**3)
    assert np.isclose(maximum, 2**4)


def test_mod():
    assert mv.mod(17, 4) == 1
    assert mv.mod(15, 3) == 0
    assert mv.mod(15.7, 30) == 15


def test_pos():
    pos_fs = +TEST_FIELDSET
    minimum = mv.minvalue(pos_fs)
    maximum = mv.maxvalue(pos_fs)
    assert np.isclose(minimum, MIN_VALUE)
    assert np.isclose(maximum, MAX_VALUE)


def test_neg():
    neg_fs = -TEST_FIELDSET
    minimum = mv.minvalue(neg_fs)
    assert np.isclose(minimum, -MAX_VALUE)


def test_abs():
    abs_fs = abs(TEST_FIELDSET)
    minimum = mv.minvalue(abs_fs)
    maximum = mv.maxvalue(abs_fs)
    assert np.isclose(minimum, MIN_VALUE)
    assert np.isclose(maximum, MAX_VALUE)
    abs_fs = abs(-TEST_FIELDSET)
    minimum = mv.minvalue(abs_fs)
    maximum = mv.maxvalue(abs_fs)
    assert np.isclose(minimum, MIN_VALUE)
    assert np.isclose(maximum, MAX_VALUE)


def test_distance():
    dist = mv.distance(TEST_FIELDSET, 0, 0)
    minimum = mv.minvalue(dist)
    maximum = mv.maxvalue(dist)
    assert np.isclose(minimum, 0.0)
    assert np.isclose(maximum, SEMI_EQUATOR)


def test_fieldset_and_fieldset():
    t = (TEST_FIELDSET > 290) & (TEST_FIELDSET < 310)
    s = mv.accumulate(t)
    assert s == 43855


def test_fieldset_and_bool():
    t = (TEST_FIELDSET > 290) & (True)
    s = mv.accumulate(t)
    assert s == 45423
    assert s == mv.accumulate(TEST_FIELDSET > 290)
    t = (TEST_FIELDSET > 290) & (False)
    s = mv.accumulate(t)
    assert s == 0


def test_bool_and_fieldset():
    t = (True) & (TEST_FIELDSET > 290)
    s = mv.accumulate(t)
    assert s == 45423
    assert s == mv.accumulate(TEST_FIELDSET > 290)
    t = (False) & (TEST_FIELDSET > 290)
    s = mv.accumulate(t)
    assert s == 0


def test_fieldset_or_fieldset():
    t = (TEST_FIELDSET < 250) | (TEST_FIELDSET > 310)
    s = mv.accumulate(t)
    assert s == 12427


def test_fieldset_or_bool():
    t = (TEST_FIELDSET < 250) | (True)
    s = mv.accumulate(t)
    assert s == 115680
    assert s == len(TEST_FIELDSET.values())
    t = (TEST_FIELDSET < 250) | (False)
    s = mv.accumulate(t)
    assert s == 10859
    assert s == mv.accumulate(TEST_FIELDSET < 250)


def test_bool_or_fieldset():
    t = (True) | (TEST_FIELDSET < 250)
    s = mv.accumulate(t)
    assert s == 115680
    assert s == len(TEST_FIELDSET.values())
    t = (False) | (TEST_FIELDSET < 250)
    s = mv.accumulate(t)
    assert s == 10859
    assert s == mv.accumulate(TEST_FIELDSET < 250)


def test_fieldset_not():
    t = ~(TEST_FIELDSET < 250)
    s = mv.accumulate(t)
    assert s == 104821


def test_valid_date_nogrib():
    vd = mv.valid_date(base=mv.date("20201231"), step=33)
    assert isinstance(vd, list)
    assert vd[0] == datetime.datetime(2021, 1, 1, 9, 0, 0)

    vd = mv.valid_date(base=mv.date("20201231"), step=[11, 33])
    assert isinstance(vd, list)
    assert vd == [
        datetime.datetime(2020, 12, 31, 11, 0, 0),
        datetime.datetime(2021, 1, 1, 9, 0, 0),
    ]

    vd = mv.valid_date(base=mv.date("2020-12-31 15:00"), step=[11, 34])
    assert isinstance(vd, list)
    assert vd == [
        datetime.datetime(2021, 1, 1, 2, 0, 0),
        datetime.datetime(2021, 1, 2, 1, 0, 0),
    ]

    vd = mv.valid_date(
        base=mv.date("2020-12-31 15:00"),
        step=[11, 34],
        step_units=datetime.timedelta(hours=1),
    )
    assert isinstance(vd, list)
    assert vd == [
        datetime.datetime(2021, 1, 1, 2, 0, 0),
        datetime.datetime(2021, 1, 2, 1, 0, 0),
    ]

    vd = mv.valid_date(
        base=mv.date("2020-12-31 15:00"),
        step=[1, 2],
        step_units=datetime.timedelta(hours=10),
    )
    assert isinstance(vd, list)
    assert vd == [
        datetime.datetime(2021, 1, 1, 1, 0, 0),
        datetime.datetime(2021, 1, 1, 11, 0, 0),
    ]

    vd = mv.valid_date(
        base=mv.date("2020-12-31 15:00"),
        step=[11, 34],
        step_units=datetime.timedelta(minutes=2),
    )
    assert isinstance(vd, list)
    assert vd == [
        datetime.datetime(2020, 12, 31, 15, 22, 0),
        datetime.datetime(2020, 12, 31, 16, 8, 0),
    ]

    vd = mv.valid_date(
        base=mv.date("2020-12-31 15:00"),
        step=[11, 34],
        step_units=datetime.timedelta(minutes=2),
    )
    assert isinstance(vd, list)
    assert vd == [
        datetime.datetime(2020, 12, 31, 15, 22, 0),
        datetime.datetime(2020, 12, 31, 16, 8, 0),
    ]


def test_valid_date_len_1():
    vd = mv.valid_date(TEST_FIELDSET)
    assert isinstance(vd, datetime.datetime)
    assert vd == datetime.datetime(2017, 4, 27, 12, 0, 0)


def test_valid_date_len_6():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    vd_grib = mv.valid_date(grib)
    assert isinstance(vd_grib[1], datetime.datetime)

    vd_ref = datetime.datetime(2017, 8, 1, 12, 0, 0)
    for vd in vd_grib:
        assert vd == vd_ref


def test_base_date():
    bd = mv.base_date(TEST_FIELDSET)
    assert isinstance(bd, datetime.datetime)
    assert bd == datetime.datetime(2017, 4, 27, 12, 0, 0)


def test_fieldset_len_1():
    flen = len(TEST_FIELDSET)
    assert flen == 1


def test_fieldset_len_6():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    flen = len(grib)
    assert flen == 6


def test_fieldset_single_index():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    grib4 = grib[3]  # 0-based indexing in Python
    assert len(grib4) == 1
    assert mv.grib_get_long(grib4, "level") == 500


def test_fieldset_positive_index_too_high():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    with pytest.raises(IndexError):
        grib_m1 = grib[177]


def test_fieldset_negative_index_1():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    grib_m1 = grib[-1]  # last element
    assert len(grib_m1) == 1
    assert mv.grib_get_long(grib_m1, "level") == 300


def test_fieldset_negative_index_5():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    grib_m1 = grib[-5]  # last element
    assert len(grib_m1) == 1
    assert mv.grib_get_long(grib_m1, "level") == 850


def test_fieldset_negative_index_6():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    grib_m1 = grib[-6]  # last element
    assert len(grib_m1) == 1
    assert mv.grib_get_long(grib_m1, "level") == 1000


def test_fieldset_negative_index_too_high():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    with pytest.raises(IndexError):
        grib_m1 = grib[-7]  # last element


def test_fieldset_array_index():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    grib_ai = grib[np.array([1.0, 2.0, 0.0, 5.0])]
    assert len(grib_ai) == 4
    assert mv.grib_get_long(grib_ai, "level") == [850, 700, 1000, 300]


def test_fieldset_array_index_int():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    grib_ai = grib[np.array([1, 2, 0, 5])]
    assert len(grib_ai) == 4
    assert mv.grib_get_long(grib_ai, "level") == [850, 700, 1000, 300]


def test_fieldset_slice():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    # slice [start,stop+1,step]
    assert mv.grib_get_long(grib[0:6:1], "level") == [1000, 850, 700, 500, 400, 300]
    assert mv.grib_get_long(grib[0:6:2], "level") == [1000, 700, 400]
    assert mv.grib_get_long(grib[4:6:1], "level") == [400, 300]
    assert mv.grib_get_long(grib[5:6:1], "level") == 300
    assert mv.grib_get_long(grib[4:12:1], "level") == [400, 300]
    assert mv.grib_get_long(grib[1:6:3], "level") == [850, 400]
    assert mv.grib_get_long(grib[-1::], "level") == 300
    assert mv.grib_get_long(grib[-1:-4:-1], "level") == [300, 400, 500]

    grib = mv.read(os.path.join(PATH, "tuv_pl.grib"))
    assert mv.grib_get_long(grib[0:18:1], "level") == [
        1000,
        1000,
        1000,
        850,
        850,
        850,
        700,
        700,
        700,
        500,
        500,
        500,
        400,
        400,
        400,
        300,
        300,
        300,
    ]


def test_empty_fieldset_slice():
    f = mv.Fieldset()
    s = f[0:4:1]
    assert s is None


def test_fieldset_iterator():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    avg = mv.average(grib)
    assert len(avg) == 6
    iteravg = []
    for f in grib:
        iteravg.append(mv.average(f))
    assert len(iteravg) == len(avg)
    for i in range(0, 6):
        assert np.isclose(avg[i], iteravg[i])


def test_fieldset_iterator_multiple():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    avg = mv.average(grib)
    assert len(avg) == 6
    for i in [1, 2, 3]:
        iteravg = []
        for f in grib:
            iteravg.append(mv.average(f))
        assert len(iteravg) == len(avg)
        for i in range(0, 6):
            assert np.isclose(avg[i], iteravg[i])


def test_fieldset_iterator_with_zip():
    # this tests something different with the iterator - this does not try to
    # 'go off the edge' of the fieldset, because the length is determined by
    # the list of levels
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    ref_levs = mv.grib_get_long(grib, "level")
    assert len(ref_levs) == 6
    levs1 = []
    levs2 = []
    for k, f in zip(grib.grib_get_long("level"), grib):
        levs1.append(k)
        levs2.append(f.grib_get_long("level"))
    assert levs1 == ref_levs
    assert levs2 == ref_levs


def test_fieldset_iterator_with_zip_multiple():
    # same as test_fieldset_iterator_with_zip() but multiple times
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    ref_levs = mv.grib_get_long(grib, "level")
    assert len(ref_levs) == 6
    for i in [1, 2, 3]:
        levs1 = []
        levs2 = []
        for k, f in zip(grib.grib_get_long("level"), grib):
            levs1.append(k)
            levs2.append(f.grib_get_long("level"))
        print(mv.grib_get_long(grib, "level"))
        assert levs1 == ref_levs
        assert levs2 == ref_levs


def test_fieldset_iterator_with_overlapping_iter_calls():
    # this test simulates what happens when we pass a fieldset to
    # the Pool.map function - there are multiple iterators working
    # on the same Fieldset
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    assert len(grib) == 6

    subset = mv.Fieldset()
    for k, f in zip([1, 2], grib):
        subset.append(f)
    assert subset.grib_get_long("level") == [1000, 850]

    subset = mv.Fieldset()
    for k, f in zip([3, 4, 5], grib):
        subset.append(f)
    assert subset.grib_get_long("level") == [1000, 850, 700]

    subset = mv.Fieldset()
    for k, f in zip([2, 1, 7, 3, 1, 5], grib):
        subset.append(f)
    assert subset.grib_get_long("level") == [1000, 850, 700, 500, 400, 300]

    subset = mv.Fieldset()
    for k, f in zip([3, 4, 5], grib):
        subset.append(f)
    assert subset.grib_get_long("level") == [1000, 850, 700]


def test_fieldset_assignment_to_field_index():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    # check numbers before assignment
    assert np.isclose(mv.integrate(grib[0]), 290.802)
    assert np.isclose(mv.integrate(grib[3]), 260.601)
    assert np.isclose(mv.integrate(grib[4]), 249.617)
    # change one field and check some fields
    grib[0] = grib[0] * 10
    assert np.isclose(mv.integrate(grib[0]), 2908.02)
    assert np.isclose(mv.integrate(grib[3]), 260.601)
    assert np.isclose(mv.integrate(grib[4]), 249.617)
    # another assignment
    grib[4] = grib[3] * 10
    assert np.isclose(mv.integrate(grib[0]), 2908.02)
    assert np.isclose(mv.integrate(grib[3]), 260.601)
    assert np.isclose(mv.integrate(grib[4]), 2606.01)


def test_fieldset_assignment_to_invalid_field_index_type():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    with pytest.raises(IndexError):
        grib[2] = "27"


def test_fieldset_relational_operators():
    a = mv.read(os.path.join(PATH, "test.grib"))
    a = mv.int(a)
    assert mv.accumulate(a > 273) == 76001
    assert mv.accumulate(a >= 273) == 78156
    assert mv.accumulate(a < 273) == 37524
    assert mv.accumulate(a <= 273) == 39679


def test_fieldset_equality_operator():
    a = mv.read(os.path.join(PATH, "test.grib"))
    v = mv.values(a)
    v[10] = -29
    v[13] = -31
    v[15] = -33
    b = a.set_values(v)
    same = a == b
    assert type(same) == mv.Fieldset
    vsame = same.values()
    assert mv.sum(vsame) == len(vsame) - 3  # all but 3 should be the same
    assert vsame[5] == 1
    assert vsame[10] == 0
    assert vsame[11] == 1
    assert vsame[12] == 1
    assert vsame[13] == 0
    assert vsame[14] == 1
    assert vsame[15] == 0


def test_fieldset_nonequality_operator():
    a = mv.read(os.path.join(PATH, "test.grib"))
    v = mv.values(a)
    v[10] = -29
    v[13] = -31
    v[15] = -33
    b = a.set_values(v)
    diff = a != b
    assert type(diff) == mv.Fieldset
    vdiff = diff.values()
    assert mv.sum(vdiff) == 3  # there should be exactly 3 differences
    assert vdiff[5] == 0
    assert vdiff[10] == 1
    assert vdiff[11] == 0
    assert vdiff[12] == 0
    assert vdiff[13] == 1
    assert vdiff[14] == 0
    assert vdiff[15] == 1


def test_nearest_gridpoint_info():
    a = mv.read(os.path.join(PATH, "test.grib"))
    ni = mv.nearest_gridpoint_info(a, 57.193, -2.360)
    ni0 = ni[0]
    assert np.isclose(ni0["latitude"], 57.0)
    assert np.isclose(ni0["longitude"], 357.75)
    assert np.isclose(ni0["distance"], 22.4505)
    assert np.isclose(ni0["value"], 282.436)
    assert ni0["index"] == 21597


def test_surrounding_gridpoints():
    a = mv.read(os.path.join(PATH, "test.grib"))
    sgi = mv.surrounding_points_indexes(a, 11.552, 50.653)
    assert np.array_equal(sgi, np.array([50468, 50467, 49988, 49987]))


def test_datainfo():
    a = mv.read(os.path.join(PATH, "tuv_pl.grib"))
    di = mv.datainfo(a)
    di3 = di[3]
    assert di3["index"] == 3
    assert di3["number_present"] == 2664
    assert di3["number_missing"] == 0
    assert di3["proportion_present"] == 1
    assert di3["proportion_missing"] == 0


def test_grib_get_key_not_exist():
    a = mv.read(os.path.join(PATH, "tuv_pl.grib"))[0:2]
    kv = a.grib_get(["silly"])
    assert kv == [[None], [None]]
    with pytest.raises(Exception):
        kv = a.grib_get_long(["silly"])


def test_empty_fieldset_contructor():
    f = mv.Fieldset()
    assert type(f) == mv.Fieldset
    assert len(f) == 0


def test_fieldset_contructor_with_path():
    f = mv.Fieldset(path=os.path.join(PATH, "test.grib"))
    assert type(f) == mv.Fieldset
    assert len(f) == 1
    ni = mv.nearest_gridpoint_info(f, 57.193, -2.360)
    ni0 = ni[0]
    assert np.isclose(ni0["latitude"], 57.0)
    assert np.isclose(ni0["longitude"], 357.75)
    assert np.isclose(ni0["distance"], 22.4505)
    assert np.isclose(ni0["value"], 282.436)
    assert ni0["index"] == 21597


def test_fieldset_create_from_list_of_paths():
    paths = [os.path.join(PATH, "t_for_xs.grib"), os.path.join(PATH, "ml_data.grib")]
    f = mv.Fieldset(path=paths)
    assert f.count() == 42
    assert f[0:2].grib_get_long("level") == [1000, 850]
    assert f[5:9].grib_get_long("level") == [300, 1, 1, 5]
    assert f[40:42].grib_get_long("level") == [133, 137]


def test_fieldset_create_from_glob_path_single():
    f = mv.Fieldset(path=os.path.join(PATH, "test.g*ib"))
    assert type(f) == mv.Fieldset
    assert len(f) == 1
    ni = mv.nearest_gridpoint_info(f, 57.193, -2.360)
    ni0 = ni[0]
    assert np.isclose(ni0["latitude"], 57.0)
    assert np.isclose(ni0["longitude"], 357.75)
    assert np.isclose(ni0["distance"], 22.4505)
    assert np.isclose(ni0["value"], 282.436)
    assert ni0["index"] == 21597


def test_fieldset_create_from_glob_path_multi():
    f = mv.Fieldset(path=os.path.join(PATH, "t_*.grib"))
    assert type(f) == mv.Fieldset
    assert len(f) == 17
    par_ref = [
        ["t", "1000"],
        ["t", "850"],
        ["t", "700"],
        ["t", "500"],
        ["t", "400"],
        ["t", "300"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
    ]
    assert par_ref == mv.grib_get(f, ["shortName", "level"])


def test_fieldset_create_from_glob_paths():
    f = mv.Fieldset(
        path=[os.path.join(PATH, "test.g*ib"), os.path.join(PATH, "t_*.grib")]
    )
    assert type(f) == mv.Fieldset
    assert len(f) == 18
    par_ref = [
        ["2t", "0"],
        ["t", "1000"],
        ["t", "850"],
        ["t", "700"],
        ["t", "500"],
        ["t", "400"],
        ["t", "300"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
        ["z", "1000"],
        ["t", "1000"],
    ]
    assert par_ref == mv.grib_get(f, ["shortName", "level"])


def test_fieldset_append_from_empty():
    f = mv.Fieldset()
    g = mv.read(os.path.join(PATH, "tuv_pl.grib"))
    f.append(g[0])
    assert type(f) == mv.Fieldset
    assert len(f) == 1
    shortnames = f.grib_get_string("shortName")
    assert shortnames == "t"
    f.append(g[1])
    assert type(f) == mv.Fieldset
    assert len(f) == 2
    shortnames = f.grib_get_string("shortName")
    assert shortnames == ["t", "u"]
    f.append(g[15:18])
    assert type(f) == mv.Fieldset
    assert len(f) == 5
    shortnames = f.grib_get_string("shortName")
    assert shortnames == ["t", "u", "t", "u", "v"]


def test_fieldset_create_from_list_of_fieldsets_1():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g1 = grib[2]
    g2 = grib[4]
    g3 = grib[1]
    list_of_fields = [g1, g2, g3]
    gl = mv.Fieldset(fields=list_of_fields)
    assert gl.count() == 3
    assert gl.grib_get_long("level") == [700, 400, 850]


def test_fieldset_create_from_list_of_fieldsets_2():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g1 = grib[2]
    g2 = grib[4]
    g3 = mv.merge(grib[1], grib[0])
    list_of_fields = [g1, g2, g3]
    gl = mv.Fieldset(fields=list_of_fields)
    assert gl.count() == 4
    assert gl.grib_get_long("level") == [700, 400, 850, 1000]


def test_fieldset_create_from_list_of_fieldsets_3():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g1 = grib[1:4]
    g2 = grib[0]
    g3 = grib[3:]
    list_of_fields = [g1, g2, g3]
    gl = mv.Fieldset(fields=list_of_fields)
    assert gl.count() == 7
    assert gl.grib_get_long("level") == [850, 700, 500, 1000, 500, 400, 300]


def test_fieldset_create_from_list_of_fieldsets_4():
    grib1 = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    grib2 = mv.read(os.path.join(PATH, "ml_data.grib"))
    g1 = grib1[1:4]
    g2 = grib2[5:8]
    g3 = grib1[0]
    list_of_fields = [g1, g2, g3]
    gl = mv.Fieldset(fields=list_of_fields)
    assert gl.count() == 7
    assert gl.grib_get_long("level") == [850, 700, 500, 17, 21, 25, 1000]


def test_fieldset_create_from_list_of_fieldsets_5():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g1 = grib[2]
    g2 = grib[4]
    g3 = grib[1]
    list_of_fields = [g1, g2, g3]
    with pytest.raises(ValueError):
        gl = mv.Fieldset(path=os.path.join(PATH, "test.grib"), fields=list_of_fields)


def test_fieldset_merge_1():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g3 = mv.merge(grib[1], grib[0])
    assert g3.count() == 2
    assert g3.grib_get_long("level") == [850, 1000]


def test_fieldset_merge_2():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g3 = mv.merge(grib[1], grib[0], grib[4])
    assert g3.count() == 3
    assert g3.grib_get_long("level") == [850, 1000, 400]


def test_fieldset_merge_3():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g3 = mv.merge(grib[2])
    assert g3.count() == 1
    assert g3.grib_get_long("level") == 700


def test_fieldset_merge_4():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    g3 = mv.merge(grib[:3])
    assert g3.count() == 3
    assert g3.grib_get_long("level") == [1000, 850, 700]


def test_fieldset_str():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    assert str(grib) == "Fieldset (6 fields)"
    assert str(grib[4]) == "Fieldset (1 field)"
    assert str(mv.Fieldset()) == "Fieldset (0 fields)"


def test_fieldset_pickling():
    pickled_fname = file_in_testdir("pickled_fieldset.p")
    g = mv.Fieldset(path=os.path.join(PATH, "tuv_pl.grib"))

    h = g[5]
    pickle.dump(h, open(pickled_fname, "wb"))
    assert os.path.isfile(pickled_fname)
    h2 = pickle.load(open(pickled_fname, "rb"))
    shortnames = h2.grib_get_string("shortName")
    assert shortnames == "v"
    os.remove(pickled_fname)

    pickle.dump(g, open(pickled_fname, "wb"))
    assert os.path.isfile(pickled_fname)
    g2 = pickle.load(open(pickled_fname, "rb"))
    shortnames = g2.grib_get_string("shortName")
    assert shortnames == [
        "t",
        "u",
        "v",
        "t",
        "u",
        "v",
        "t",
        "u",
        "v",
        "t",
        "u",
        "v",
        "t",
        "u",
        "v",
        "t",
        "u",
        "v",
    ]
    os.remove(pickled_fname)


def test_fieldset_basic_mean():
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    m = mv.mean(alldata)  # as function
    assert len(m) == 1
    assert np.isclose(m.values()[0], 8619.0555)
    assert np.isclose(m.values()[2], 8588.4003)
    m = alldata.mean()  # as method
    assert len(m) == 1
    assert np.isclose(m.values()[0], 8619.0555)
    assert np.isclose(m.values()[2], 8588.4003)


def test_fieldset_basic_mean_with_missing_vals():
    # replace first field with all missing values
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    f1vals = alldata[0].values()
    f1vals[:] = np.nan
    alldata[0] = alldata[0].set_values(f1vals)
    m = mv.mean(alldata)  # function
    assert len(m) == 1
    assert np.isnan(m.values()[0])
    assert np.isnan(m.values()[2])
    m = mv.mean(alldata, missing=True)  # function
    assert len(m) == 1
    assert np.isclose(m.values()[0], 8644.7534)
    assert np.isclose(m.values()[2], 8614.7797)
    m = alldata.mean()  # method
    assert len(m) == 1
    assert np.isnan(m.values()[0])
    assert np.isnan(m.values()[2])
    m = alldata.mean(missing=True)  # method
    assert len(m) == 1
    assert np.isclose(m.values()[0], 8644.7534)
    assert np.isclose(m.values()[2], 8614.7797)


def test_fieldset_mean_over_dim_number():
    # compute and check ensemble means
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    num_ens_members = len(mv.unique(alldata.grib_get_long("number")))
    assert num_ens_members == 6
    ens_mean = alldata.mean(dim="number")
    # check general structure of the result
    assert len(ens_mean) == len(alldata) / num_ens_members
    assert mv.unique(ens_mean.grib_get_long("level")) == mv.unique(
        alldata.grib_get_long("level")
    )
    assert mv.unique(ens_mean.grib_get_long("step")) == mv.unique(
        alldata.grib_get_long("step")
    )
    assert mv.unique(ens_mean.grib_get_string("shortName")) == mv.unique(
        alldata.grib_get_string("shortName")
    )
    assert len(mv.unique(ens_mean.grib_get_long("number"))) == 1
    # check values for specific means #1
    mean1_computed = ens_mean.select(shortName="z", level=1000, step=3)
    mean1_verified = alldata.select(shortName="z", level=1000, step=3).mean()
    assert np.array_equal(mean1_computed.values(), mean1_verified.values())
    assert np.isclose(mean1_computed.values()[0], 1233.7)  # via calculator
    # check values for specific means #2
    mean2_computed = ens_mean.select(shortName="t", level=700, step=9)
    mean2_verified = alldata.select(shortName="t", level=700, step=9).mean()
    assert np.array_equal(mean2_computed.values(), mean2_verified.values())
    assert np.isclose(mean2_computed.values()[2], 276.208)  # via calculator
    # check values for specific means #3
    mean3_computed = ens_mean.select(shortName="u", level=500, step=6)
    mean3_verified = alldata.select(shortName="u", level=500, step=6).mean()
    assert np.array_equal(mean3_computed.values(), mean3_verified.values())


def test_fieldset_mean_over_dim_step():
    # compute and check means over steps
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    num_steps = len(mv.unique(alldata.grib_get_long("step")))
    assert num_steps == 4
    step_mean = alldata.mean(dim="step")
    # check general structure of the result
    assert len(step_mean) == len(alldata) / num_steps
    assert mv.unique(step_mean.grib_get_long("level")) == mv.unique(
        alldata.grib_get_long("level")
    )
    assert mv.unique(step_mean.grib_get_long("number")) == mv.unique(
        alldata.grib_get_long("number")
    )
    assert mv.unique(step_mean.grib_get_string("shortName")) == mv.unique(
        alldata.grib_get_string("shortName")
    )
    assert len(mv.unique(step_mean.grib_get_long("step"))) == 1
    # check values for specific means #1
    mean1_computed = step_mean.select(shortName="z", level=1000, number=3)
    mean1_verified = alldata.select(shortName="z", level=1000, number=3).mean()
    assert np.array_equal(mean1_computed.values(), mean1_verified.values())
    # check values for specific means #2
    mean2_computed = step_mean.select(shortName="t", level=850, number=5)
    mean2_verified = alldata.select(shortName="t", level=850, number=5).mean()
    assert np.array_equal(mean2_computed.values(), mean2_verified.values())
    assert np.isclose(mean2_computed.values()[1], 285.035)  # via calculator
    # check values for specific means #3
    mean3_computed = step_mean.select(shortName="u", level=500, number=1)
    mean3_verified = alldata.select(shortName="u", level=500, number=1).mean()
    assert np.array_equal(mean3_computed.values(), mean3_verified.values())


def test_fieldset_mean_over_dim_step_with_expver():
    # compute and check step means when we have a dimension that's not
    # in our default list
    alldata = mv.read(file_in_testdir("zt_multi_expvers.grib"))
    num_steps = len(mv.unique(alldata.grib_get_long("step")))
    assert num_steps == 4
    step_mean = alldata.mean(
        dim="step", preserve_dims=["shortName", "experimentVersionNumber"]
    )
    # check general structure of the result
    assert len(step_mean) == len(alldata) / num_steps
    assert mv.unique(step_mean.grib_get_long("level")) == mv.unique(
        alldata.grib_get_long("level")
    )
    assert mv.unique(step_mean.grib_get_long("number")) == mv.unique(
        alldata.grib_get_long("number")
    )
    assert mv.unique(step_mean.grib_get_string("shortName")) == mv.unique(
        alldata.grib_get_string("shortName")
    )
    assert len(mv.unique(step_mean.grib_get_long("step"))) == 1
    # check values for specific means #1
    mean1_computed = step_mean.select(shortName="z", experimentVersionNumber="0001")
    mean1_verified = alldata.select(
        shortName="z", experimentVersionNumber="0001"
    ).mean()
    assert np.array_equal(mean1_computed.values(), mean1_verified.values())
    # check values for specific means #2
    mean2_computed = step_mean.select(shortName="t", experimentVersionNumber="xxyz")
    mean2_verified = alldata.select(
        shortName="t", experimentVersionNumber="xxyz"
    ).mean()
    assert np.array_equal(mean2_computed.values(), mean2_verified.values())
    assert np.isclose(mean2_computed.values()[18], 312.2153)


def test_fieldset_mean_over_dim_with_empty_fieldset():
    alldata = mv.read(file_in_testdir("zt_multi_expvers.grib"))
    with pytest.raises(ValueError):
        alldata.select(shortName="t", level=850, number=5).mean()


def test_fieldset_mean_over_dim_number_with_holes():
    # compute and check ensemble means when there are holes in the hypercube
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    a = alldata.select(shortName=["z", "u"])
    t = alldata.select(shortName="t")
    t = t.select(level=[850, 500])  # remove some levels from 't'
    alldata = mv.Fieldset(fields=[a, t])

    num_ens_members = len(mv.unique(alldata.grib_get_long("number")))
    assert num_ens_members == 6
    ens_mean = alldata.mean(dim="number")
    # check general structure of the result
    assert len(ens_mean) == len(alldata) / num_ens_members
    assert mv.unique(ens_mean.grib_get_long("level")) == mv.unique(
        alldata.grib_get_long("level")
    )
    assert mv.unique(ens_mean.grib_get_long("step")) == mv.unique(
        alldata.grib_get_long("step")
    )
    assert mv.unique(ens_mean.grib_get_string("shortName")) == mv.unique(
        alldata.grib_get_string("shortName")
    )
    assert len(mv.unique(ens_mean.grib_get_long("number"))) == 1
    # check values for specific means #1
    mean1_computed = ens_mean.select(shortName="z", level=1000, step=3)
    mean1_verified = alldata.select(shortName="z", level=1000, step=3).mean()
    assert np.array_equal(mean1_computed.values(), mean1_verified.values())
    assert np.isclose(mean1_computed.values()[0], 1233.7)  # via calculator
    # check values for specific means #2
    mean2_computed = ens_mean.select(shortName="t", level=850, step=9)
    mean2_verified = alldata.select(shortName="t", level=850, step=9).mean()
    assert np.array_equal(mean2_computed.values(), mean2_verified.values())
    assert np.isclose(mean2_computed.values()[2], 285.548)  # via calculator
    # check values for specific means #3
    mean3_computed = ens_mean.select(shortName="u", level=500, step=6)
    mean3_verified = alldata.select(shortName="u", level=500, step=6).mean()
    assert np.array_equal(mean3_computed.values(), mean3_verified.values())
    # check that missing means are not present
    mean_missing = ens_mean.select(shortName="t", level=1000)
    assert len(mean_missing) == 0


def test_fieldset_basic_sum():
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    m = mv.sum(alldata)  # as function
    assert len(m) == 1
    assert np.isclose(m.values()[0], 2482287.9922)
    assert np.isclose(m.values()[2], 2473459.2813)
    m = alldata.sum()  # as method
    assert len(m) == 1
    assert np.isclose(m.values()[0], 2482287.9922)
    assert np.isclose(m.values()[2], 2473459.2813)


def test_fieldset_basic_sum_with_missing_vals():
    # replace first field with all missing values
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    f1vals = alldata[0].values()
    f1vals[:] = np.nan
    alldata[0] = alldata[0].set_values(f1vals)
    m = mv.sum(alldata)  # function
    print(m.values()[0], m.values()[2])
    assert len(m) == 1
    assert np.isnan(m.values()[0])
    assert np.isnan(m.values()[2])
    m = mv.sum(alldata, missing=True)  # function
    print(m.values()[0], m.values()[2])
    assert len(m) == 1
    assert np.isclose(m.values()[0], 2481044.2422)
    assert np.isclose(m.values()[2], 2472441.8047)
    m = alldata.sum()  # method
    print(m.values()[0], m.values()[2])
    assert len(m) == 1
    assert np.isnan(m.values()[0])
    assert np.isnan(m.values()[2])
    m = alldata.sum(missing=True)  # method
    print(m.values()[0], m.values()[2])
    assert len(m) == 1
    assert np.isclose(m.values()[0], 2481044.2422)
    assert np.isclose(m.values()[2], 2472441.8047)


def test_fieldset_sum_over_dim_number():
    # compute and check ensemble sums
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    num_ens_members = len(mv.unique(alldata.grib_get_long("number")))
    assert num_ens_members == 6
    ens_sum = alldata.sum(dim="number")
    # check general structure of the result
    assert len(ens_sum) == len(alldata) / num_ens_members
    assert mv.unique(ens_sum.grib_get_long("level")) == mv.unique(
        alldata.grib_get_long("level")
    )
    assert mv.unique(ens_sum.grib_get_long("step")) == mv.unique(
        alldata.grib_get_long("step")
    )
    assert mv.unique(ens_sum.grib_get_string("shortName")) == mv.unique(
        alldata.grib_get_string("shortName")
    )
    assert len(mv.unique(ens_sum.grib_get_long("number"))) == 1
    # check values for specific sums #1
    sum1_computed = ens_sum.select(shortName="z", level=1000, step=3)
    sum1_verified = alldata.select(shortName="z", level=1000, step=3).sum()
    assert np.array_equal(sum1_computed.values(), sum1_verified.values())
    # assert np.isclose(sum1_computed.values()[0], 1233.7)  # via calculator
    # check values for specific sums #2
    sum2_computed = ens_sum.select(shortName="t", level=700, step=9)
    sum2_verified = alldata.select(shortName="t", level=700, step=9).sum()
    assert np.array_equal(sum2_computed.values(), sum2_verified.values())
    # assert np.isclose(sum2_computed.values()[2], 276.208)  # via calculator
    # check values for specific sums #3
    sum3_computed = ens_sum.select(shortName="u", level=500, step=6)
    sum3_verified = alldata.select(shortName="u", level=500, step=6).sum()
    assert np.array_equal(sum3_computed.values(), sum3_verified.values())


def test_fieldset_basic_stdev():
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    z = alldata.select(shortName="z")
    m = mv.stdev(z)  # as function
    # for testing
    # val5 = []
    # for f in z:
    #    val5.append(f.values()[5])
    # print(np.std(h))
    assert len(m) == 1
    assert np.isclose(m.values()[5], 20948.418)
    m = z.stdev()  # as method
    assert len(m) == 1
    assert np.isclose(m.values()[5], 20948.418)


def test_fieldset_stdev_over_dim_number():
    # compute and check ensemble stdevs
    alldata = mv.read(file_in_testdir("ztu_multi_dim.grib"))
    num_ens_members = len(mv.unique(alldata.grib_get_long("number")))
    assert num_ens_members == 6
    ens_stdev = alldata.stdev(dim="number")
    # check general structure of the result
    assert len(ens_stdev) == len(alldata) / num_ens_members
    assert mv.unique(ens_stdev.grib_get_long("level")) == mv.unique(
        alldata.grib_get_long("level")
    )
    assert mv.unique(ens_stdev.grib_get_long("step")) == mv.unique(
        alldata.grib_get_long("step")
    )
    assert mv.unique(ens_stdev.grib_get_string("shortName")) == mv.unique(
        alldata.grib_get_string("shortName")
    )
    assert len(mv.unique(ens_stdev.grib_get_long("number"))) == 1
    # check values for specific stdevs #1
    stdev1_computed = ens_stdev.select(shortName="z", level=1000, step=3)
    stdev1_verified = alldata.select(shortName="z", level=1000, step=3).stdev()
    assert np.array_equal(stdev1_computed.values(), stdev1_verified.values())
    assert np.isclose(stdev1_computed.values()[0], 6.855, 0.0001)  # via spreadsheet
    # check values for specific stdevs #2
    stdev2_computed = ens_stdev.select(shortName="t", level=700, step=9)
    stdev2_verified = alldata.select(shortName="t", level=700, step=9).stdev()
    assert np.array_equal(stdev2_computed.values(), stdev2_verified.values())
    assert np.isclose(stdev2_computed.values()[0], 0.02276, 0.001)  # via spreadsheet
    # check values for specific stdevs #3
    stdev3_computed = ens_stdev.select(shortName="u", level=500, step=6)
    stdev3_verified = alldata.select(shortName="u", level=500, step=6).stdev()
    assert np.array_equal(stdev3_computed.values(), stdev3_verified.values())


def test_read_bufr():
    bufr = mv.read(file_in_testdir("obs_3day.bufr"))
    assert mv.type(bufr) == "observations"


def test_write_method_bufr():
    bufr = mv.read(file_in_testdir("obs_3day.bufr"))
    write_path = file_in_testdir("obs_3day_written.bufr")
    bufr.write(write_path)
    b2 = mv.read(write_path)
    assert mv.type(b2) == "observations"
    os.remove(write_path)


def test_read_gpt():
    gpt = mv.read(file_in_testdir("t2m_3day.gpt"))
    assert mv.type(gpt) == "geopoints"
    assert mv.count(gpt) == 45


TEST_GEOPOINTS = mv.read(os.path.join(PATH, "t2m_3day.gpt"))


def test_gpts_write_method():
    g = mv.read(file_in_testdir("t2m_3day.gpt"))
    gcount = g.count()
    write_path = file_in_testdir("t2m_3day_written.gpt")
    g.write(write_path)
    h = mv.read(write_path)
    assert mv.type(h) == "geopoints"
    assert h.count() == gcount
    os.remove(write_path)


def test_filter_gpt():
    filter_out = TEST_GEOPOINTS.filter(TEST_GEOPOINTS >= 280)
    assert mv.type(filter_out) == "geopoints"
    assert mv.count(filter_out) == 38


def test_bool_filter_gpt():
    condition = TEST_GEOPOINTS.latitudes() > 58
    filter_out = TEST_GEOPOINTS.filter(condition)
    assert mv.type(filter_out) == "geopoints"
    assert mv.count(filter_out) == 3
    assert np.array_equal(filter_out.latitudes(), np.array([60.14, 61.2, 59.53]))
    assert np.array_equal(filter_out.values(), np.array([277.1, 278.8, 276.5]))


def test_sqrt_geopoints():
    sqrt_out = mv.sqrt(TEST_GEOPOINTS)
    maximum = mv.maxvalue(sqrt_out)
    assert mv.type(sqrt_out) == "geopoints"
    assert np.isclose(maximum, MAX_SQRT_GPT)


def test_add_geopoints():
    add = TEST_GEOPOINTS + TEST_GEOPOINTS
    maximum = mv.maxvalue(add)
    assert np.isclose(maximum, MAX_GPT + MAX_GPT)


def test_prod_geopoints():
    prod = TEST_GEOPOINTS * TEST_GEOPOINTS
    maximum = mv.maxvalue(prod)
    assert np.isclose(maximum, MAX_GPT * MAX_GPT)


def test_geopoints_element():
    g1 = TEST_GEOPOINTS[0]
    assert isinstance(g1, dict)
    assert g1["latitude"] == 49.43
    assert g1["longitude"] == -2.6
    assert g1["height"] == 0
    assert g1["date"] == 20170425
    assert g1["time"] == 1200
    assert g1["value"] == 282.4
    assert g1["value2"] == 0
    assert g1["value_missing"] == 0
    assert g1["value2_missing"] == 0
    g44 = TEST_GEOPOINTS[44]
    assert isinstance(g44, dict)
    assert g44["latitude"] == 59.53


def test_geopoints_slice_assert():
    with pytest.raises(IndexError):
        sl = TEST_GEOPOINTS[2:16:2]


def test_geopoints_relational_operator():
    lt = TEST_GEOPOINTS < 1
    le = TEST_GEOPOINTS <= 1
    gt = TEST_GEOPOINTS > 100
    ge = TEST_GEOPOINTS >= 100
    assert mv.maxvalue(lt) == 0
    assert mv.maxvalue(le) == 0
    assert mv.maxvalue(gt) == 1
    assert mv.maxvalue(ge) == 1


def test_geopoints_equality_operator():
    a = mv.read(file_in_testdir("t2m_3day.gpt"))
    assert mv.type(a) == "geopoints"
    v = mv.values(a)
    v[10] = -29
    v[13] = -31
    v[15] = -33
    b = a.set_values(v)
    same = a == b
    assert mv.type(same) == "geopoints"
    vsame = same.values()
    assert mv.sum(vsame) == len(vsame) - 3  # all but 3 should be the same
    assert vsame[5] == 1
    assert vsame[10] == 0
    assert vsame[11] == 1
    assert vsame[12] == 1
    assert vsame[13] == 0
    assert vsame[14] == 1
    assert vsame[15] == 0


def test_geopoints_nonequality_operator():
    a = mv.read(file_in_testdir("t2m_3day.gpt"))
    assert mv.type(a) == "geopoints"
    v = mv.values(a)
    v[10] = -29
    v[13] = -31
    v[15] = -33
    b = a.set_values(v)
    diff = a != b
    assert mv.type(diff) == "geopoints"
    vdiff = diff.values()
    assert mv.sum(vdiff) == 3  # there should be exactly 3 differences
    assert vdiff[5] == 0
    assert vdiff[10] == 1
    assert vdiff[11] == 0
    assert vdiff[12] == 0
    assert vdiff[13] == 1
    assert vdiff[14] == 0
    assert vdiff[15] == 1


def _optional_check_create_geo_inline():
    # creates geopoints using numpy arrays and lists
    # values are valid, np.nan and None
    # - the ability to handle np.nan in lists is only available
    #   in Metview 5.15.0 and above
    g = mv.create_geo(
        type="ncols",
        latitudes=np.array([4, 5, np.nan]),
        longitudes=[2.3, np.nan, 6.5],
        levels=850,  # all rows will have 850 as their level
        dates=[20180808, 20170707, 20160606],  # dates as numbers
        times=None,
        stnids=["aberdeen", "aviemore", "edinburgh"],
        elevations=np.array([np.nan, 14.1, np.nan]),
        temp=[273.15, np.nan, 281.45],
        precip=[None, np.nan, 1],
        speed=np.array([2, 3, 5]),
    )

    def check_columns(gpt):
        aeq = np.testing.assert_array_equal
        aeq(mv.latitudes(gpt), np.array([4, 5, np.nan]))
        aeq(mv.longitudes(gpt), np.array([2.3, np.nan, 6.5]))
        aeq(mv.levels(gpt), np.array([850, 850, 850]))
        aeq(mv.elevations(gpt), np.array([np.nan, 14.1, np.nan]))
        aeq(gpt["temp"], np.array([273.15, np.nan, 281.45]))
        aeq(gpt["precip"], np.array([np.nan, np.nan, 1]))

    check_columns(g)
    temp_file = file_in_testdir("created_geo.gpts")
    # check that it's written to disk ok
    g.write(temp_file)
    h = mv.read(temp_file)
    check_columns(h)
    os.remove(temp_file)


def test_create_geo_inline():
    version = mv.version_info()
    if version["metview_version"] >= 51500.0:
        _optional_check_create_geo_inline()


def test_geopoints_set_dates():
    g = mv.create_geo(3)

    # set dates from datetimes
    dts = [
        datetime.datetime(2017, 4, 27),
        datetime.datetime(2018, 5, 28),
        datetime.datetime(2019, 6, 29),
    ]
    h = mv.set_dates(g, dts)
    assert h.dates() == dts

    # set dates from integers
    dts = [20120403, 20131102, 20010101]
    h = mv.set_dates(g, dts)
    assert h.dates() == [
        datetime.datetime(2012, 4, 3),
        datetime.datetime(2013, 11, 2),
        datetime.datetime(2001, 1, 1),
    ]


def test_geopoints_set_latitudes_via_indexing_1():
    g = mv.create_geo(3)
    g["latitude"] = [5, 7, 9]
    assert np.array_equal(mv.latitudes(g), np.array([5, 7, 9]))
    assert np.array_equal(mv.longitudes(g), np.array([0, 0, 0]))
    g["value"] = [6.6, 29.5, 46.7]
    assert np.array_equal(g["value"], np.array([6.6, 29.5, 46.7]))
    assert np.array_equal(mv.values(g), np.array([6.6, 29.5, 46.7]))


def test_geopoints_set_latitudes_via_indexing_2():
    g = mv.create_geo(type="ncols", myvals_0=np.array([10.0, 20.0, 30.0]))
    g["myvals_0"] = [7, 9, 14]
    assert np.array_equal(g["myvals_0"], np.array([7, 9, 14]))
    assert np.array_equal(mv.values(g, "myvals_0"), np.array([7, 9, 14]))


def test_geopoints_fieldset_operator():
    diff = TEST_FIELDSET - TEST_GEOPOINTS
    assert mv.type(diff) == "geopoints"


def test_obsfilter():
    bufr = mv.read(file_in_testdir("obs_3day.bufr"))

    # test two styles of passing parameters
    gpt1 = mv.obsfilter({"data": bufr, "parameter": "012004", "output": "geopoints"})
    gpt2 = mv.obsfilter(data=bufr, parameter="012004", output="geopoints")
    assert mv.type(gpt1) == "geopoints"
    assert mv.count(gpt1) == 45
    assert mv.type(gpt2) == "geopoints"
    assert mv.count(gpt2) == 45


def test_read_gptset():
    gpts = mv.read(file_in_testdir("geopointset_1.gpts"))
    assert mv.type(gpts) == "geopointset"
    assert mv.count(gpts) == 6
    gpt1 = gpts[0]
    assert mv.type(gpt1) == "geopoints"
    assert mv.count(gpt1) == 11
    assert mv.metadata(gpt1) == {}
    gpt2 = gpts[1]
    assert mv.type(gpt2) == "geopoints"
    assert mv.count(gpt2) == 1
    # check the metadata
    md = mv.metadata(gpt2)
    assert isinstance(md, dict)
    assert md["mykey1"] == "val1"
    assert md["mykey2"] == 5
    # check that it is iterable
    counts = [mv.count(c) for c in gpts]
    assert counts == [11.0, 1.0, 44.0, 11.0, 1.0, 44.0]
    # test the filtering
    bad_filter = mv.filter(gpts, {"badkey": 7})
    assert bad_filter is None
    good_filter = mv.filter(gpts, {"mykey2": 5})
    assert mv.type(good_filter) == "geopointset"
    assert mv.count(good_filter) == 1
    assert mv.count(good_filter[0]) == 1
    lats = good_filter[0].latitudes()
    assert len(lats) == 1
    assert lats[0] == 60.82


def test_gptset_write_method():
    g = mv.read(file_in_testdir("geopointset_1.gpts"))
    write_path = file_in_testdir("geopointset_1_written.gpt")
    g.write(write_path)
    h = mv.read(write_path)
    assert mv.type(h) == "geopointset"
    assert h.count() == g.count()
    h1 = h[0]
    assert mv.type(h1) == "geopoints"
    assert mv.count(h1) == 11
    os.remove(write_path)


def test_date_year():
    npd1 = np.datetime64("2017-04-27T06:18:02")
    assert mv.year(npd1) == 2017
    npd2 = np.datetime64("2017-04-27T06:18:02.16")
    assert mv.year(npd2) == 2017

    dt1 = datetime.datetime(2017, 4, 27, 6, 18, 2)
    assert mv.year(dt1) == 2017
    dt2 = datetime.datetime(2017, 4, 27, 6, 18, 2, 16)
    assert mv.year(dt2) == 2017

    d1 = datetime.date(2017, 4, 27)
    assert mv.year(d1) == 2017


def test_date_month():
    npd1 = np.datetime64("2017-04-27T06:18:02")
    assert mv.month(npd1) == 4
    npd2 = np.datetime64("2017-04-27T06:18:02.16")
    assert mv.month(npd2) == 4

    dt1 = datetime.datetime(2017, 4, 27, 6, 18, 2)
    assert mv.month(dt1) == 4
    dt2 = datetime.datetime(2017, 4, 27, 6, 18, 2, 16)
    assert mv.month(dt2) == 4

    d1 = datetime.date(2017, 4, 27)
    assert mv.month(d1) == 4


def test_date_day():
    npd1 = np.datetime64("2017-04-27T06:18:02")
    assert mv.day(npd1) == 27
    npd2 = np.datetime64("2017-04-27T06:18:02.16")
    assert mv.day(npd2) == 27

    dt1 = datetime.datetime(2017, 4, 27, 6, 18, 2)
    assert mv.day(dt1) == 27
    dt2 = datetime.datetime(2017, 4, 27, 6, 18, 2, 16)
    assert mv.day(dt2) == 27

    d1 = datetime.date(2017, 4, 27)
    assert mv.day(d1) == 27


def test_date_hour():
    npd1 = np.datetime64("2017-04-27T06:18:02")
    assert mv.hour(npd1) == 6
    npd2 = np.datetime64("2017-04-27T06:18:02.16")
    assert mv.hour(npd2) == 6

    dt1 = datetime.datetime(2017, 4, 27, 6, 18, 2)
    assert mv.hour(dt1) == 6
    dt2 = datetime.datetime(2017, 4, 27, 6, 18, 2, 16)
    assert mv.hour(dt2) == 6

    d1 = datetime.date(2017, 4, 27)
    assert mv.hour(d1) == 0


def test_date_minute():
    npd1 = np.datetime64("2017-04-27T06:18:02")
    assert mv.minute(npd1) == 18
    npd2 = np.datetime64("2017-04-27T06:18:02.16")
    assert mv.minute(npd2) == 18

    dt1 = datetime.datetime(2017, 4, 27, 6, 18, 2)
    assert mv.minute(dt1) == 18
    dt2 = datetime.datetime(2017, 4, 27, 6, 18, 2, 16)
    assert mv.minute(dt2) == 18

    d1 = datetime.date(2017, 4, 27)
    assert mv.minute(d1) == 0


def test_date_second():
    npd1 = np.datetime64("2017-04-27T06:18:02")
    assert mv.second(npd1) == 2
    npd2 = np.datetime64("2017-04-27T06:18:02.16")
    assert mv.second(npd2) == 2

    dt1 = datetime.datetime(2017, 4, 27, 6, 18, 2)
    assert mv.second(dt1) == 2
    dt2 = datetime.datetime(2017, 4, 27, 6, 18, 2, 16)
    assert mv.second(dt2) == 2

    d1 = datetime.date(2017, 4, 27)
    assert mv.second(d1) == 0


def test_date_string():
    npd1 = np.datetime64("2017-04-27T06:18:02")
    assert mv.string(npd1, "yyyy-mm-dd") == "2017-04-27"
    assert mv.string(npd1, "dd-mm-yyyy") == "27-04-2017"


def test_numpy_numeric_args():
    # we don't test them all here, but hopefully a representative sample
    assert mv.call("+", np.int32(5), 1) == 6
    assert mv.call("+", np.int64(5), 1) == 6
    assert mv.call("+", np.byte(8), 1) == 9
    assert mv.call("+", np.uint16(8), 1) == 9
    assert np.isclose(mv.call("+", np.float32(5.5), 1), 6.5)
    assert np.isclose(mv.call("+", np.float64(5.5), 1), 6.5)


def test_odb():
    if mv.is_feature_available("odb") == 0:
        print("Skipping test_odb because ODB is not enabled in this Metview version")
        return

    db = mv.read(file_in_testdir("temp_u.odb"))
    assert mv.type(db) == "odb"

    # assert isinstance(db,mv.Odb)
    assert mv.count(db) == 88

    p_val = mv.values(db, "p")
    assert mv.count(p_val) == 88
    assert np.isclose(p_val[0], 98065.578125)
    assert np.isclose(p_val[87], 97651.2109375)

    t_val = mv.values(db, "t")
    assert mv.count(t_val) == 88
    assert np.isclose(t_val[0], 144700)
    assert np.isclose(t_val[87], 94700)

    v_val = mv.values(db, "val")
    assert mv.count(v_val) == 88
    assert np.isclose(v_val[0], -4.62306786)
    assert np.isclose(v_val[87], -4.27525187)


def test_odb_filter():
    if mv.is_feature_available("odb") == 0:
        print(
            "Skipping test_odb_filter because ODB is not enabled in this Metview version"
        )
        return

    db = mv.read(file_in_testdir("temp_u.odb"))
    # assert isinstance(db,mv.Odb)
    assert mv.count(db) == 88

    db_res = mv.odb_filter(
        {
            "odb_data": db,
            "odb_query": "select p, t, val where val < -8",
        }
    )

    # assert isinstance(db_res,mv.Odb)
    assert mv.count(db_res) == 6
    val = mv.values(db_res, "val")
    a = np.array(
        [-9.11442089, -8.16880512, -8.07200909, -8.06602955, -8.49743557, -8.21722794]
    )
    np.testing.assert_allclose(val, a)


def test_odb_to_dataframe_1():
    if mv.is_feature_available("odb") == 0:
        print("Skipping test_odb because ODB is not enabled in this Metview version")
        return

    db = mv.read(file_in_testdir("temp_u.odb"))
    assert mv.type(db) == "odb"

    df = db.to_dataframe()
    assert isinstance(df, pd.DataFrame)

    assert df.shape == (88, 3)
    dt1_loc = df.iloc[0]["p"]
    assert np.isclose(dt1_loc, 98065.6)
    dt1_loc = df.iloc[5]["t"]
    assert np.isclose(dt1_loc, 144700)
    dt1_loc = df.iloc[50]["t"]
    assert np.isclose(dt1_loc, 103200)
    dt1_loc = df.iloc[29]["val"]
    assert np.isclose(dt1_loc, -6.06863)
    dt1_loc = df.iloc[87]["val"]
    assert np.isclose(dt1_loc, -4.27525)


# test an ODB that has strings
def test_odb_to_dataframe_2():
    if mv.is_feature_available("odb") == 0:
        print("Skipping test_odb because ODB is not enabled in this Metview version")
        return

    db = mv.read(file_in_testdir("small_odb.odb"))
    assert mv.type(db) == "odb"

    df = db.to_dataframe()
    assert isinstance(df, pd.DataFrame)

    assert df.shape == (273, 54)
    dt1_loc = df.iloc[0]["an_depar@body"]
    assert np.isclose(dt1_loc, -0.123831)
    dt1_loc = df.iloc[0]["class@desc"]
    assert dt1_loc.strip() == "rd"  # strings from ODB are padded with spaces
    dt1_loc = df.iloc[20]["expver@desc"]
    assert dt1_loc.strip() == "fgww"  # strings from ODB are padded with spaces
    dt1_loc = df.iloc[20]["sensor@hdr"]  # test a constant integer field
    assert dt1_loc == 3


# this tests the calling of the Cross Section module, but also the
# return of netCDF data and also that we can perform operations on it
# as input and output
def test_cross_section_data():
    grib = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    xs_data = mv.mcross_sect(
        line=[59.9, -180, -13.5, 158.08],
        data=grib,
    )
    # the result of this should be a netCDF variable
    assert mv.type(xs_data) == "netcdf"
    mv.setcurrent(xs_data, "t")
    assert mv.dimension_names(xs_data) == ["time", "nlev", "lon"]
    assert np.isclose(mv.value(xs_data, 0), 230.39156)
    xs_data_x2 = xs_data * 2
    assert np.isclose(mv.value(xs_data_x2, 0), 460.7831)


def test_netcdf_var_indexing():
    nc = mv.read(file_in_testdir("xs_date_mv5.nc"))
    mv.setcurrent(nc, 0)
    assert mv.attributes(nc)["long_name"] == "time"
    mv.setcurrent(nc, 1)
    assert mv.attributes(nc)["long_name"] == "latitude"
    mv.setcurrent(nc, 4)
    assert mv.attributes(nc)["long_name"] == "Temperature"


def test_netcdf_single_value():
    nc = mv.read(file_in_testdir("xs_date_mv5.nc"))
    mv.setcurrent(nc, "t")
    assert mv.attributes(nc)["long_name"] == "Temperature"
    assert np.isclose(mv.value(nc, 0), 234.7144)
    assert np.isclose(mv.value(nc, 4), 237.4377)


def test_netcdf_multi_indexed_values():
    nc = mv.read(file_in_testdir("xs_date_mv5.nc"))
    mv.setcurrent(nc, "t")
    assert mv.attributes(nc)["long_name"] == "Temperature"
    assert np.isclose(mv.values(nc, [0, 0, 0]), 234.7144)
    assert np.isclose(mv.values(nc, [0, 0, 4]), 237.4377)
    assert np.isclose(mv.values(nc, [0, 1, 0]), 248.7220)
    assert np.isclose(mv.values(nc, [0, 1, 1]), 249.3030)


def test_netcdf_multi_indexed_values_with_all():
    nc = mv.read(file_in_testdir("xs_date_mv5.nc"))
    mv.setcurrent(nc, "t")
    assert mv.attributes(nc)["long_name"] == "Temperature"
    v = mv.values(nc, [0, 0, "all"])
    assert len(v) == 64
    assert np.isclose(v[0], 234.714)
    assert np.isclose(v[63], 258.979)
    v = mv.values(nc, [0, "all", 0])
    assert len(v) == 5
    assert np.isclose(v[0], 234.714)
    assert np.isclose(v[4], 260.484)


def test_netcdf_write_method():
    nc = mv.read(file_in_testdir("xs_date_mv5.nc"))
    write_path = file_in_testdir("xs_date_mv5_written.nc")
    nc.write(write_path)
    nc2 = mv.read(write_path)
    mv.setcurrent(nc2, "t")
    assert mv.attributes(nc2)["long_name"] == "Temperature"
    assert np.isclose(mv.value(nc2, 0), 234.7144)
    assert np.isclose(mv.value(nc2, 4), 237.4377)
    os.remove(write_path)


def test_netcdf_to_dataset():
    nc = mv.read(file_in_testdir("xs_date_mv5.nc"))
    x = nc.to_dataset()
    assert isinstance(x, xr.core.dataset.Dataset)
    assert isinstance(x["t"], xr.DataArray)


@pytest.mark.skip()
@pytest.mark.filterwarnings("ignore:GRIB write")
def test_dataset_to_fieldset():
    grib = mv.read(file_in_testdir("t_for_xs.grib"))
    x = grib.to_dataset()
    f = mv.dataset_to_fieldset(x)
    assert mv.type(f) == "fieldset"
    assert len(f) == 6


def test_bad_type_to_fieldset():
    gpt = mv.read(file_in_testdir("t2m_3day.gpt"))
    with pytest.raises(TypeError):
        f = mv.dataset_to_fieldset(gpt)


@pytest.mark.skip()
@pytest.mark.filterwarnings("ignore:GRIB write")
def test_pass_dataset_as_arg():
    grib = mv.read(file_in_testdir("t_for_xs.grib"))
    x = grib.to_dataset()
    fs = mv.mean(x * 2)  # *2 is done by xarray, mean is done by Metview
    assert mv.type(fs) == "fieldset"
    assert len(fs) == 1


def test_unsupported_type_to_metview():
    r = range(1, 90)
    with pytest.raises(TypeError):
        f = mv.maxvalue(r)


def test_strings():
    sentence = "Hello this is a sentence with many many words"
    sthis = mv.search(sentence, "this")
    assert sthis == 6


@pytest.mark.skip()
def test_met_plot():
    contour = mv.mcont(
        {
            "CONTOUR_LINE_COLOUR": "PURPLE",
            "CONTOUR_LINE_THICKNESS": 3,
            "CONTOUR_HIGHLIGHT": False,
        }
    )
    coast = mv.mcoast({"MAP_COASTLINE_LAND_SHADE": True})
    bindings.met_plot(TEST_FIELDSET, contour, coast)


def test_plot_1():
    if mv.is_feature_available("plotting") == 0:
        print(
            "Skipping test_plot_1 because plotting is not enabled in this Metview version"
        )
        return

    output_name = file_in_testdir("test_plot_1")
    mv.setoutput(mv.png_output(output_name=output_name))
    grid_shade = {
        "legend": True,
        "contour": False,
        "contour_highlight": True,
        "contour_shade": True,
        "contour_shade_technique": "grid_shading",
        "contour_shade_max_level_colour": "red",
        "contour_shade_min_level_colour": "blue",
        "contour_shade_colour_direction": "clockwise",
    }
    degraded_field = mv.read(data=TEST_FIELDSET, grid=[4, 4])
    mv.plot(degraded_field, mv.mcont(grid_shade))
    output_name_from_magics = output_name + ".1.png"
    assert os.path.isfile(output_name_from_magics)
    os.remove(output_name_from_magics)


def test_plot_2():
    if mv.is_feature_available("plotting") == 0:
        print(
            "Skipping test_plot_2 because plotting is not enabled in this Metview version"
        )
        return

    output_name = file_in_testdir("test_plot_2")
    png = mv.png_output(output_name=output_name)
    grid_shade = {
        "legend": True,
        "contour": False,
        "contour_highlight": True,
        "contour_shade": True,
        "contour_shade_technique": "grid_shading",
        "contour_shade_max_level_colour": "olive",
        "contour_shade_min_level_colour": "blue",
        "contour_shade_colour_direction": "clockwise",
    }
    degraded_field = mv.read(data=TEST_FIELDSET, grid=[4, 4])
    # animate=True just to check that it is allowed and ignored as a param
    mv.plot(png, degraded_field, mv.mcont(grid_shade), animate=True)
    output_name_from_magics = output_name + ".1.png"
    assert os.path.isfile(output_name_from_magics)
    os.remove(output_name_from_magics)


@pytest.mark.skip()
def test_plot_3():
    png_output = {
        "output_type": "PnG",
        "output_width": 1200,
        "output_name": file_in_testdir("test_plot"),
    }
    grid_shade = {
        "legend": True,
        "contour": False,
        "contour_highlight": True,
        "contour_shade": True,
        "contour_shade_technique": "grid_shading",
        "contour_shade_max_level_colour": "red",
        "contour_shade_min_level_colour": "blue",
        "contour_shade_colour_direction": "clockwise",
    }
    bindings.plot(TEST_FIELDSET, grid_shade, **png_output)
    os.remove(file_in_testdir("test_plot.1.png"))


def test_plot_2_pages():
    if mv.is_feature_available("plotting") == 0:
        print(
            "Skipping test_plot_2_pages because plotting is not enabled in this Metview version"
        )
        return

    output_name = file_in_testdir("test_plot_2_pages")
    png = mv.png_output(output_name=output_name)
    degraded_field = mv.read(data=TEST_FIELDSET, grid=[4, 4])
    page1 = mv.plot_page(top=2.2, bottom=52.2, right=100)
    page2 = mv.plot_page(top=50)
    dw = mv.plot_superpage(pages=[page1, page2])
    mv.setoutput(png)
    mv.plot(dw[0], degraded_field, dw[1], degraded_field + 50)
    output_name_from_magics = output_name + ".1.png"
    assert os.path.isfile(output_name_from_magics)
    os.remove(output_name_from_magics)


def test_macro_error():
    with pytest.raises(Exception):
        TEST_FIELDSET[125]


def test_value_file_path():
    p = TEST_FIELDSET + 1  # this will force Metview to write a new temporary file
    assert p.url() != ""
    assert os.path.isfile(p.url())


@pytest.mark.parametrize(
    "file_name",
    [
        "ml_data.grib",
    ],
)
def test_temporary_file_deletion(file_name):
    g = mv.read(file_in_testdir(file_name))
    h = g + 1  # this will force Metview to write a new temporary file
    temp_filepath = h.url()
    assert temp_filepath != ""  # file should exist right now
    assert os.path.isfile(temp_filepath)  # file should exist right now
    h = 0  # this should force deletion of the variable
    # here we make the assumption that the system has not created
    # another temporary file with the same name between object
    # deletion and the following test for the file
    assert not (os.path.isfile(temp_filepath))


def test_push_nil():
    n = mv.nil()
    assert n is None
    assert mv.type(n) == "nil"


def test_simple_get_vector():
    a = [5, 6, 7, 8, 9]
    v = mv.vector(a)
    assert isinstance(v, np.ndarray)
    assert len(v) == 5
    assert v[1] == 6
    assert v.dtype == np.dtype("float64")


def test_simple_get_vector_float32():
    if supports_float32_vectors():
        mv.vector_set_default_type("float32")
        a = [5, 6, 7, 8, 9]
        v = mv.vector(a)
        assert isinstance(v, np.ndarray)
        assert len(v) == 5
        assert v[1] == 6
        assert v.dtype == np.dtype("float32")
        mv.vector_set_default_type(
            "float64"
        )  # reset to default type for the other tests


def test_get_vector_from_grib():
    v = mv.values(TEST_FIELDSET[0])
    assert isinstance(v, np.ndarray)
    assert v.dtype == np.dtype("float64")
    assert len(v) == 115680
    assert np.isclose(min(v), 206.93560791)
    assert np.isclose(max(v), 316.06060791)


def test_get_vector_float32_from_grib():
    if supports_float32_vectors():
        mv.vector_set_default_type("float32")
        v = mv.values(TEST_FIELDSET[0])
        assert isinstance(v, np.ndarray)
        assert v.dtype == np.dtype("float32")
        assert len(v) == 115680
        assert np.isclose(min(v), 206.93560791)
        assert np.isclose(max(v), 316.06060791)
        mv.vector_set_default_type(
            "float64"
        )  # reset to default type for the other tests


def test_get_vector_from_multi_field_grib():
    g = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    v = mv.values(g)
    assert isinstance(v, np.ndarray)
    assert v.shape == (6, 2664)


def test_2d_numpy_to_vector():
    np2d = np.array([[-1, -2, -3, -4], [-5, -6, -7, -8]])
    absnp = mv.abs(np2d)
    # we expect the result to be flattened, but all the values used
    assert absnp.shape == (8,)
    assert np.array_equal(absnp, np.array([1, 2, 3, 4, 5, 6, 7, 8]))


def test_vector_sort():
    v1 = np.array([5, 3, 4, 9, 1, 4.2])
    vsortasc = mv.sort(v1)
    assert np.array_equal(vsortasc, np.array([1, 3, 4, 4.2, 5, 9]))


def test_vector_sort_indices():
    v1 = np.array([5, 3, 4, 9, 1, 4.2])
    vsortindasc = mv.sort_indices(v1)
    assert np.array_equal(vsortindasc, np.array([4, 1, 2, 5, 0, 3]))


def test_vector_find():
    s = np.array([4, 7, 2, 3, 4, 9, 0], dtype=np.float64)
    f = mv.find(s, 2)
    assert f == 2
    f = mv.find(s, 4)
    assert f == 0
    f = mv.find(s, 4, "all")
    assert np.array_equal(f, np.array([0, 4], dtype=np.float64))


def test_set_vector_float64_from_numpy_array():
    r = np.arange(1, 21, dtype=np.float64)
    assert mv.type(r) == "vector"
    assert mv.dtype(r) == "float64"
    assert mv.count(r) == 20
    assert mv.maxvalue(r) == 20


def test_set_vector_float32_from_numpy_array():
    if supports_float32_vectors():
        r = np.arange(1, 21, dtype=np.float32)
        assert mv.type(r) == "vector"
        assert mv.dtype(r) == "float32"
        assert mv.count(r) == 20
        assert mv.maxvalue(r) == 20


def test_set_vector_10_bool_from_numpy_array():
    r = np.array([1, 0, 0, 1, 1, 0, 1], dtype=bool)
    assert mv.type(r) == "vector"
    assert mv.dtype(r) == "float32"
    assert mv.count(r) == 7
    assert np.array_equal(mv.abs(r), np.array([1, 0, 0, 1, 1, 0, 1], dtype=np.float32))


def test_set_vector_TF_bool_from_numpy_array():
    r = np.array([True, False, False, True, True, False, True], dtype=bool)
    assert mv.type(r) == "vector"
    assert mv.dtype(r) == "float32"
    assert mv.count(r) == 7
    assert np.array_equal(mv.abs(r), np.array([1, 0, 0, 1, 1, 0, 1], dtype=np.float32))


def test_set_vector_from_int_numpy_array():
    r = np.array([5, 8, 7, 1, 2900], dtype=int)
    assert mv.type(r) == "vector"
    assert mv.dtype(r) == "float64"
    assert mv.count(r) == 5
    assert np.array_equal(mv.abs(r), np.array([5, 8, 7, 1, 2900], dtype=np.float64))


def test_set_vector_byte_from_numpy_array_raises_error():
    r = np.arange(1, 21, dtype=np.byte)
    with pytest.raises(TypeError):
        a = mv.type(r)


#    with pytest.raises(TypeError):
#        a = mv.type(r)


# these are dtype(int) although not explicitly stated
def test_set_vector_from_int_numpy_array_implicit():
    r = np.array([5, 8, 7, 1, 2900])
    assert mv.type(r) == "vector"
    assert mv.dtype(r) == "float64"
    assert mv.count(r) == 5
    assert np.array_equal(mv.abs(r), np.array([5, 8, 7, 1, 2900], dtype=np.float64))


def test_simple_vector_with_nans():
    a = np.array([1, np.nan, 2, 3])
    n = -a
    assert mv.count(a) == 4
    assert mv.sum(a) == 6  # missing vals Python->Macro
    # seems that comparing numPy arrays that have NaNs in them is not
    # so straightforward, but this works:
    np.testing.assert_array_equal(mv.neg(a), n)  # missing vals Macro->Python


def test_zero_length_vector_from_numpy():
    a = np.array([])
    assert mv.type(a) == "vector"
    assert mv.count(a) == 0


def test_numpy_array_from_zero_length_vector():
    v = mv.vector(0)
    assert isinstance(v, np.ndarray)
    assert len(v) == 0


def test_numpy_array_slices_to_vector():
    npa = np.array([5, 3, 4, 9, 1, 4.2, 7, 8, 9])
    v = mv.call("+", npa, 0)
    assert np.array_equal(v, np.array([5, 3, 4, 9, 1, 4.2, 7, 8, 9]))
    v = mv.call("+", npa[2:5], 0)
    assert np.array_equal(v, np.array([4, 9, 1]))
    v = mv.call("+", npa[2:-1], 0)
    assert np.array_equal(v, np.array([4, 9, 1, 4.2, 7, 8]))
    v = mv.call("+", npa[::2], 0)
    assert np.array_equal(v, np.array([5, 4, 1, 7, 9]))
    v = mv.call("+", npa[2:7:3], 0)
    assert np.array_equal(v, np.array([4, 4.2]))


def test_numpy_array_slices_from_2d_to_vector():
    latlons = np.array([[50.0, 15.0], [-80.0, 0.0], [40.0, -5.0]])
    lats = latlons[:, 0]
    lons = latlons[:, 1]
    ref_lats = np.array([50.0, -80.0, 40.0])
    ref_lons = np.array([15.0, 0.0, -5])
    vlats = mv.call("+", lats, 0)
    vlons = mv.call("+", lons, 0)
    assert np.array_equal(vlats, ref_lats)
    assert np.array_equal(vlons, ref_lons)


def test_oo_interface_on_fieldsets():
    fs = mv.read(os.path.join(PATH, "t_for_xs.grib"))
    assert np.isclose(fs.maxvalue(), 320.434)
    assert np.isclose(fs[2].nearest_gridpoint(10, 20), 282.697)


def test_oo_interface_on_geopoints():
    gpt = mv.read(file_in_testdir("t2m_3day.gpt"))
    assert gpt.count() == 45
    assert np.isclose(gpt.mean(), 281.247)


def test_std_gpts_to_dataframe():
    gpt = mv.read(file_in_testdir("t2m_3day.gpt"))
    df = gpt.to_dataframe()
    print(df)
    assert isinstance(df, pd.DataFrame)
    assert df.shape == (45, 5)
    # dt1_iloc = df.iloc[0][0]
    dt1_iloc = df.iloc[0]["latitude"]
    assert isinstance(dt1_iloc, float)
    assert np.isclose(dt1_iloc, 49.43)
    # dt2_iloc = df.iloc[0][4]
    dt2_iloc = df.iloc[0]["date"]
    assert isinstance(dt2_iloc, datetime.datetime)
    dt3_loc = df.iloc[0]["date"]
    assert isinstance(dt3_loc, datetime.datetime)
    assert dt3_loc == datetime.datetime(2017, 4, 25, 12, 0, 0)
    assert df.loc[5]["latitude"] == 51.15
    assert df.loc[25]["longitude"] == 2.65
    assert df.loc[8]["level"] == 0
    assert np.isclose(df.loc[4]["value"], 281.2)


def test_xy_vector_gpts_to_dataframe():
    gpt = mv.read(file_in_testdir("uv.gpt"))
    df = gpt.to_dataframe()
    assert isinstance(df, pd.DataFrame)
    assert df.shape == (39, 6)
    # dt1_iloc = df.iloc[0][0]
    dt1_iloc = df.iloc[0]["latitude"]
    assert isinstance(dt1_iloc, float)
    assert np.isclose(dt1_iloc, 70.0)
    # dt2_iloc = df.iloc[0][4]
    # assert(isinstance(dt2_iloc, datetime.datetime))
    dt3_loc = df.iloc[0]["date"]
    assert isinstance(dt3_loc, datetime.datetime)
    assert dt3_loc == datetime.datetime(2018, 5, 14, 12, 0, 0)
    assert df.loc[5]["latitude"] == 70
    assert df.loc[25]["longitude"] == 30
    assert df.loc[8]["level"] == 500
    assert np.isclose(df.loc[4]["x-comp"], -10.865656)
    assert np.isclose(df.loc[4]["y-comp"], 17.589124)


def test_xyv_gpts_to_dataframe():
    gpt = mv.read(file_in_testdir("xyv.gpt"))
    df = gpt.to_dataframe()
    assert isinstance(df, pd.DataFrame)
    assert df.shape == (60, 3)
    assert df.loc[5]["latitude"] == 70
    assert df.loc[25]["longitude"] == 20
    assert np.isclose(df.loc[4]["value"], -10.8656)


def test_ncols_gpts_to_dataframe():
    gpt = mv.read(file_in_testdir("geo_ncols_8.gpt"))
    df = gpt.to_dataframe()
    assert isinstance(df, pd.DataFrame)
    assert df.shape == (4, 9)
    assert df.loc[2]["stnid"] == None
    assert np.isclose(df.loc[2]["latitude"], 51.93)
    assert np.isclose(df.loc[0]["longitude"], 35.85)
    assert np.isclose(df.loc[1]["t2"], 274.9)
    assert np.isclose(df.loc[1]["o3"], 24)
    assert np.isclose(df.loc[1]["td"], 290.4)
    assert np.isclose(df.loc[1]["rh"], 68)
    assert np.isclose(df.loc[1]["octa"], 1)


def test_grib_to_dataset():
    grib = mv.read(file_in_testdir("t_for_xs.grib"))
    x = grib.to_dataset()
    assert isinstance(x, xr.core.dataset.Dataset)
    assert isinstance(x["t"], xr.DataArray)


def test_read_filter_to_dataset():
    tuv_all_levs = mv.read(file_in_testdir("tuv_pl.grib"))
    u_all_levs = mv.read(data=tuv_all_levs, param="u")
    assert mv.grib_get_long(u_all_levs, "level") == [1000, 850, 700, 500, 400, 300]
    assert mv.grib_get_string(u_all_levs, "shortName") == ["u", "u", "u", "u", "u", "u"]
    x = u_all_levs.to_dataset()
    x_keys = x.keys()
    assert "u" in x_keys  # only 'u' should be there
    assert "v" not in x_keys  # only 'u' should be there
    assert "t" not in x_keys  # only 'u' should be there


def test_kwargs_to_dataset():
    t_series = mv.read(file_in_testdir("t_time_series.grib"))
    t0 = t_series[0]
    ds = t0.to_dataset(squeeze=False, read_keys=["experimentVersionNumber"])
    assert "step" in ds.dims
    assert "GRIB_experimentVersionNumber" in ds.t.attrs


def test_table():
    # test csv with metadata
    db = mv.read_table(
        table_filename=file_in_testdir("sample_metadata.csv"),
        table_delimiter=" ",
        table_combine_delimiters="on",
        table_header_row=2,
        table_meta_data_rows=1,
    )
    assert db.type() == "table"
    assert db.count() == 9
    assert db.name(3) == "LATIT"
    assert len(db.metadata_keys()) == 16
    assert db.metadata_value("integration") == "PETTERSSEN"
    v = db.values(0)
    assert isinstance(v, np.ndarray)
    assert len(v) == 7
    assert np.array_equal(v, np.array([0, 3600, 7200, 10800, 14400, 18000, 21600]))
    v = db.values(4)
    assert isinstance(v, np.ndarray)
    assert len(v) == 7
    assert np.array_equal(
        v, np.array([963.5, 964.1, 964.0, 963.3, 961.8, 960.3, 959.0])
    )

    # test csv with no metadata
    db = mv.read(file_in_testdir("sample.csv"))
    assert db.type() == "table"
    assert db.count() == 4
    assert db.name(2) == "h2"
    v = db.values(1)
    assert isinstance(v, np.ndarray)
    assert len(v) == 6
    assert np.array_equal(v, np.array([4, 5, 6, 7, 8, 9]))
    v = db.values("h2")
    assert isinstance(v, np.ndarray)
    assert len(v) == 6
    assert np.array_equal(v, np.array([4, 5, 6, 7, 8, 9]))


def test_table_to_dataframe():
    t = mv.read(file_in_testdir("sample.csv"))
    df = t.to_dataframe()
    assert isinstance(df, pd.DataFrame)
    assert df.shape == (6, 4)
    dt0_iloc = df.iloc[0]["h1"]
    assert isinstance(dt0_iloc, np.int64)
    assert dt0_iloc == 1
    dt0_iloc = df.iloc[0][0]
    assert isinstance(dt0_iloc, np.int64)
    assert dt0_iloc == 1
    dt3_iloc = df.iloc[3]["h1"]
    assert isinstance(dt3_iloc, np.int64)
    assert dt3_iloc == 4
    dt3_iloc = df.iloc[3][0]
    assert isinstance(dt3_iloc, np.int64)
    assert dt3_iloc == 4
    dt2_iloc = df.iloc[2]["name"]
    assert isinstance(dt2_iloc, str)
    assert dt2_iloc == "charlie"
    dt2_iloc = df.iloc[2][3]
    assert isinstance(dt2_iloc, str)
    assert dt2_iloc == "charlie"
    assert np.array_equal(df["h2"], np.array([4, 5, 6, 7, 8, 9]))


def test_flextra():
    flx = mv.read(file_in_testdir("flextra_output.txt"))
    assert flx.type() == "definition"
    trNum = int(mv.flextra_group_get(flx, "trNum"))
    assert trNum == 5

    startLst = ["03:00:00", "06:00:00", "09:00:00", "12:00:00", "15:00:00"]
    stopIndexLst = [1, 1, 1, 1, 1]
    for i in range(trNum):
        vals = mv.flextra_tr_get(flx, i, ["startTime", "stopIndex"])
        assert len(vals) == 2
        assert vals[0] == startLst[i]
        assert int(vals[1]) == stopIndexLst[i]

    # Read data for the first trajectory
    vals = mv.flextra_tr_get(flx, 0, ["lat", "lon", "date"])
    assert len(vals) == 3
    assert vals[0].size == 25
    assert vals[1].size == 25
    assert len(vals[2]) == 25
    assert isinstance(vals[0], np.ndarray)
    assert isinstance(vals[1], np.ndarray)
    assert isinstance(vals[2], list)
    assert np.isclose(vals[0].mean(), 63.369828)
    assert np.isclose(vals[0].std(), 2.2269590)
    assert np.isclose(vals[1].mean(), 18.014544)
    assert np.isclose(vals[1].std(), 14.98830786689625)
    assert vals[2][0] == datetime.datetime(2012, 1, 11, 3, 0, 0)


def test_request():
    # set verb separately
    d = {"param1": "value1", "param2": 180}
    r = mv.Request(d)
    assert isinstance(r, mv.Request)
    assert isinstance(r, dict)
    r.set_verb("DVERB1")
    assert r.get_verb() == "DVERB1"
    assert r["param1"] == "value1"
    assert r["param2"] == 180
    r["param3"] = 108
    assert r["param3"] == 108

    # set verb in constructor
    d = {"param1": "value1", "param2": 180}
    r = mv.Request(d, "DVERB2")
    assert isinstance(r, mv.Request)
    assert isinstance(r, dict)
    assert r.get_verb() == "DVERB2"
    assert r["param1"] == "value1"
    assert r["param2"] == 180
    r["param3"] = 108
    assert r["param3"] == 108

    # make a copy of r
    r2 = mv.Request(r)
    assert isinstance(r2, mv.Request)
    assert isinstance(r2, dict)
    assert r2.get_verb() == "DVERB2"
    assert r2["param1"] == "value1"
    assert r2["param2"] == 180
    r2["param3"] = 108
    assert r2["param3"] == 108
    r2["param3"] = 179
    assert r2["param3"] == 179
    assert r["param3"] == 108  # original request is unchanged

    # destroy r and check that r2 is still ok
    r = 0
    assert isinstance(r2, mv.Request)
    assert isinstance(r2, dict)
    assert r2.get_verb() == "DVERB2"
    assert r2["param1"] == "value1"
    assert r2["param2"] == 180
    r2["param3"] = 108
    assert r2["param3"] == 108

    # check the string representation
    d = {"param1": "value1", "param2": 180}
    r = mv.Request(d, "DVERB3")
    rstr = str(r)
    assert rstr == "VERB: DVERB3{'param1': 'value1', 'param2': 180}"

    # test the copying of an mcont
    m1 = mv.mcont(contour_line_style="dot")
    assert m1["contour_line_style"] == "DOT"
    m2 = mv.Request(m1)
    assert m1.val_pointer != m2.val_pointer
    assert isinstance(m2, mv.Request)
    assert m2["contour_line_style"] == "DOT"
    m2["contour_line_style"] = "DASH"
    assert m2["contour_line_style"] == "DASH"
    assert m1["contour_line_style"] == "DOT"


def test_read_request():
    # check read function
    lreq = mv.read_request(file_in_testdir("request.req"))
    assert isinstance(lreq, list)
    assert len(lreq) == 2

    # check first request
    req = lreq[0]
    assert isinstance(req, mv.Request)
    assert isinstance(req, dict)
    assert req.get_verb() == "GRIB"
    assert req["PATH"] == "t.grib"

    # check second request
    req = lreq[1]
    assert isinstance(req, mv.Request)
    assert isinstance(req, dict)
    assert req.get_verb() == "MCONT"
    assert req["contour_line_colour"] == "red"
    assert req["CONTOUR_HIGHLIGHT_FREQUENCy"] == 2
    assert req["contour_level_selection_type"] == "LEVEL_LIST"
    assert isinstance(req["CONTOUR_LEVEL_LIST"], list)
    assert isinstance(req["CONTOUR_LEVEL_LIST"][0], float)
    assert req["CONTOUR_LEVEL_LIST"] == [-10, 0, 10]
    assert isinstance(req["contour_sHade_COLOUR_list"], list)
    assert isinstance(req["contour_shade_colour_list"][0], str)
    assert req["CONTOUR_sHADe_coLour_liSt"] == [
        "RGB(0.5,0.2,0.8)",
        "RGB(0.8,0.7,0.3)",
        "RGB(0.4,0.8,0.3)",
    ]


def test_file():
    grib = mv.read(file_in_testdir("t_for_xs.grib"))
    fpath = file_in_testdir("my_file.grib")
    f = mv.file(fpath)
    mv.write(f, grib[2])
    mv.write(f, grib[5])
    mv.write(f, grib[1])
    f = 0
    assert os.path.isfile(fpath)
    result = mv.read(fpath)
    assert isinstance(result, mv.Fieldset)
    assert len(result) == 3
    assert result.grib_get_long("level") == [700, 300, 850]
    os.remove(fpath)


def test_download():
    url = "http://get.ecmwf.int/test-data/metview/gallery/city_loc.gpt"
    g = mv.download(url=url)
    assert mv.type(g) == "geopoints"


def test_download_gallery_data():
    fname = "z_for_spectra.grib"
    if os.path.exists(fname):
        os.remove(fname)
    assert not os.path.isfile(fname)
    g = mv.gallery.load_dataset(fname)
    assert mv.type(g) == "fieldset"
    assert os.path.isfile(fname)
    os.remove(fname)


def test_download_gallery_zipped_data():
    fname = "major_basins_of_the_world_0_0_0.zip"
    subname = "Major_Basins_of_the_World.prj"
    if os.path.exists(fname):
        os.remove(fname)
    assert not os.path.isfile(fname)
    if os.path.exists(subname):
        os.remove(subname)
    assert not os.path.isfile(subname)
    g = mv.gallery.load_dataset(fname)
    assert os.path.isfile(fname)
    assert os.path.isfile(subname)
    unzipped_files = glob.glob("Major_Basins_of_the_World.*")
    os.remove(fname)
    for f in unzipped_files:
        os.remove(f)


def test_download_gallery_data_bad_fname():
    fname = "zzz_for_spectra.grib"
    with pytest.raises(Exception):
        g = mv.gallery.load_dataset(fname)


def test_speed():
    # test with grib written with write() function
    fs = mv.Fieldset(path=os.path.join(PATH, "tuv_pl.grib"))

    fs_u = fs.select(shortName="u")
    fs_v = fs.select(shortName="v")

    # single field
    u = fs_u[0]
    v = fs_v[0]
    r = mv.speed(u, v)
    assert len(r) == 1
    np.testing.assert_allclose(
        r.values(), np.sqrt(np.square(u.values()) + np.square(v.values())), rtol=1e-05
    )
    assert r.grib_get_long("paramId") == 10

    # multi fields
    u = fs_u[:2]
    v = fs_v[:2]
    r = mv.speed(u, v)
    assert len(r) == 2
    for i in range(len(r)):
        np.testing.assert_allclose(
            r[i].values(),
            np.sqrt(np.square(u[i].values()) + np.square(v[i].values())),
            rtol=1e-05,
        )
    assert r.grib_get_long("paramId") == [10, 10]


def test_mvl_ml2hpa():
    # 1. test against reference fields

    fs = mv.Fieldset(path=get_test_data("tq_ml137.grib"))
    t = fs.select(shortName="t")
    lnsp = fs.select(shortName="lnsp")

    # this is not the same order as in t_ref!
    pres = [100, 500, 925, 850, 1000]
    t_ref = mv.Fieldset(path=get_test_data("ml2pl_ref.grib"))

    r = mv.mvl_ml2hPa(lnsp, t, pres)

    levels = r.grib_get_long("level")
    np.testing.assert_allclose(levels, pres)

    sh = r.grib_get_string("shortName")
    assert sh == ["t"] * len(pres)

    for p in pres:
        np.testing.assert_allclose(
            r.select(level=p).values(),
            t_ref.select(level=p).values(),
            rtol=1e-05,
            err_msg=f"p={p}",
        )

    # 2. test pressure values

    ml_data = mv.read(file_in_testdir("ml_data.grib"))
    assert mv.type(ml_data) == "fieldset"
    ml_t = mv.read(data=ml_data, param="t")
    ml_lnsp = mv.read(data=ml_data, param="lnsp")
    desired_pls = [1000, 900, 850, 500, 300, 100, 10, 1, 0.8, 0.5, 0.3, 0.1]

    pl_data = mv.mvl_ml2hPa(ml_lnsp, ml_t, desired_pls)

    assert mv.type(pl_data) == "fieldset"
    pls = pl_data.grib_get_long("level")
    lev_types = pl_data.grib_get_string("typeOfLevel")
    lev_divisors = [1 if x == "isobaricInhPa" else 100 for x in lev_types]
    pl_in_hpa = [a / b for a, b in zip(pls, lev_divisors)]
    assert pl_in_hpa == desired_pls


def test_smooth_n_point():
    f = mv.Fieldset(path=get_test_data("regular_ll_iPos_jNeg_iCons_multi.grib"))
    f_ref = mv.Fieldset(path=get_test_data("ref_smooth_n_point.grib"))

    meta_ref = f.grib_get_long("generatingProcessIdentifier")

    r = f.smooth_n_point(n=5)
    fieldset_equal(r, f_ref[:2])
    meta = r.grib_get_long("generatingProcessIdentifier")
    np.testing.assert_allclose(meta, meta_ref)

    r = f.smooth_n_point(n=5, repeat=2)
    fieldset_equal(r, f_ref[2:4])
    meta = r.grib_get_long("generatingProcessIdentifier")
    np.testing.assert_allclose(meta, meta_ref)

    r = f.smooth_n_point(n=9, repeat=2, mode="nearest")
    fieldset_equal(r, f_ref[4:6])
    meta = r.grib_get_long("generatingProcessIdentifier")
    np.testing.assert_allclose(meta, meta_ref)


def test_smooth_gaussian():
    f = mv.Fieldset(path=get_test_data("regular_ll_iPos_jNeg_iCons_multi.grib"))
    f_ref = mv.Fieldset(path=get_test_data("ref_smooth_gaussian.grib"))

    meta_ref = f.grib_get_long("generatingProcessIdentifier")

    r = f.smooth_gaussian(sigma=1)
    fieldset_equal(r, f_ref[:2])
    meta = r.grib_get_long("generatingProcessIdentifier")
    np.testing.assert_allclose(meta, meta_ref)

    r = f.smooth_gaussian(sigma=2, repeat=2, mode="nearest")
    fieldset_equal(r, f_ref[2:4])
    meta = r.grib_get_long("generatingProcessIdentifier")
    np.testing.assert_allclose(meta, meta_ref)


def test_convolve():
    f = mv.Fieldset(path=get_test_data("regular_ll_iPos_jNeg_iCons_multi.grib"))
    f_ref = mv.Fieldset(path=get_test_data("ref_convolve.grib"))

    meta_ref = f.grib_get_long("generatingProcessIdentifier")

    weights = np.array(
        [[0.0625, 0.125, 0.0625], [0.125, 0.25, 0.125], [0.0625, 0.125, 0.0625]]
    )

    r = f.convolve(weights)
    fieldset_equal(r, f_ref[:2])
    meta = r.grib_get_long("generatingProcessIdentifier")
    np.testing.assert_allclose(meta, meta_ref)

    r = f.convolve(weights, repeat=2, mode="nearest")
    fieldset_equal(r, f_ref[2:4])
    meta = r.grib_get_long("generatingProcessIdentifier")
    np.testing.assert_allclose(meta, meta_ref)


# subprocess.run does not work well with Metview, so we use another method
# to run a Python process that uses Metview and returns the output
def _run_external_python_command(cmd, args):
    import subprocess
    import sys
    import tempfile

    fd, path = tempfile.mkstemp()

    run_args = [sys.executable]  # the Python executable
    run_args.append(cmd)
    run_args.extend(args)

    # create a clean environment to avoid clashes with the current session
    env = {"PATH": os.environ["PATH"]}
    mv_start_cmd = os.environ.get("METVIEW_PYTHON_START_CMD", None)
    if mv_start_cmd is not None:
        env.update({"METVIEW_PYTHON_START_CMD": mv_start_cmd})
    ppath = os.environ.get("PYTHONPATH", None)
    if ppath is not None:
        env.update({"PYTHONPATH": ppath})

    with os.fdopen(fd, "w") as f:
        subprocess.call(run_args, stdout=f, env=env)
    f = open(path, "r")
    a = f.read()
    f.close()
    return a


def test_arguments():
    output = _run_external_python_command(
        file_in_testdir("args.py"), ["arg1", "arg 2", "59.35", "99.9000"]
    )
    assert output == "['arg1', 'arg 2', 59.35, 99.9]\n"


@pytest.mark.parametrize(
    "arg,ref",
    [
        (["a", "b"], "ab"),
        (["a", "b", "c"], "abc"),
        ([None, "a"], "a"),
        ([None, "a", "b"], "ab"),
        ([np.array([1, 2, 3]), np.array([4, 5, 6])], np.array([1, 2, 3, 4, 5, 6])),
        ([None, np.array([1, 2, 3])], np.array([1, 2, 3])),
        (
            [None, np.array([1, 2, 3]), np.array([4, 5, 6])],
            np.array([1, 2, 3, 4, 5, 6]),
        ),
        ([[1, 2], [3, 4]], [1, 2, 3, 4]),
        ([[1, 2], 3], [1, 2, 3]),
        ([[1, 2], "a"], [1, 2, "a"]),
        ([None, [1, 2]], [1, 2]),
        ([None, [1, 2], [3, 4]], [1, 2, 3, 4]),
        ([None, 1], 1),
    ],
)
def test_macro_python_compat_concat(arg, ref):
    res = mv.compat.concat(*arg)
    if isinstance(ref, np.ndarray):
        np.allclose(res, ref)
    else:
        assert res == ref


def test_macro_python_compat_concat_fieldset():
    f1 = mv.Fieldset(path=file_in_testdir("t1000_LL_2x2.grb"))
    f2 = mv.Fieldset(path=file_in_testdir("t1000_LL_7x7.grb"))

    res = mv.compat.concat(f1, f2)
    assert isinstance(res, mv.Fieldset)
    assert len(res) == len(f1) + len(f2)
    assert res[0].grib_get_long("iDirectionIncrementInDegrees") == 2
    assert res[1].grib_get_long("iDirectionIncrementInDegrees") == 7

    res = mv.compat.concat(None, f1)
    assert isinstance(res, mv.Fieldset)
    assert len(res) == len(f1)
    assert res[0].grib_get_long("iDirectionIncrementInDegrees") == 2


def test_macro_python_compat_concat_gpt():
    f = mv.read(file_in_testdir("xyv.gpt"))

    res = mv.compat.concat(None, f)
    assert isinstance(res, mv.bindings.Geopoints)
    assert len(res) == len(f)


def test_macro_python_compat_concat_bufr():
    f = mv.read(file_in_testdir("obs_3day.bufr"))

    res = mv.compat.concat(None, f)
    assert isinstance(res, mv.bindings.Bufr)


@pytest.mark.parametrize(
    "start,stop,step,num,ref",
    [
        (0, 11, 4, 2, [0, 1, 4, 5, 8, 9]),
        (0, 6, 1, 1, [0, 1, 2, 3, 4, 5]),
    ],
)
def test_macro_python_compat_index4(start, stop, step, num, ref):
    vals = np.array(list(range(12)))
    res = mv.compat.index4(vals, start, stop, step, num)
    np.allclose(vals[res], np.array(ref))
