The most common proposal types used by MrBayes 3

Sliding Window Proposal

New values are picked uniformly from a sliding window of size δ centered on x.
- Tuning parameter: δ
- Bolder proposals: increase δ
- More modest proposals: decrease δ

Works best when the effect on the probability of the data is similar throughout the parameter range

Multiplier Proposal

New values are picked from the equivalent of a sliding window on the log-transformed x axis.
- Tuning parameter: $\lambda = 2 \ln a$
- Bolder proposals: increase λ
- More modest proposals: decrease λ

Works well when changes in small values of x have a larger effect on the probability of data than changes in large values of x. Example: branch lengths.

Dirichlet proposal

New values are picked from a Dirichlet (or Beta) distribution centered on x.
- Tuning parameter: α
- Bolder proposals: decrease α
- More modest proposals: increase α

Works well for proportions, such as revmat and statefreqs.

Node Slider

Two adjacent branches a and b are chosen at random.
The length of $a + b$ is changed using a multiplier with tuning parameter λ.
The node x is randomly inserted on $a + b$ according to a uniform distribution.
- Bolder proposals: increase λ
- More modest proposals: decrease λ

The boldness of the proposal depends heavily on the uniform reinsertion of x, so changing λ may have limited effect.

Extending TBR

Three internal branches - a, b, and c - are chosen at random.
Their total length is changed using a multiplier with tuning parameter λ.
- One of the subtrees A or B is picked at random.
- It is randomly reinserted on $a + b + c$ according to a uniform distribution.

- Bolder proposals: increase λ
- More modest proposals: decrease λ

Changing λ has little effect on the boldness of the proposal.

An internal branch a is chosen at random.
The length of a is changed using a multiplier with tuning parameter λ.
The node x is moved, with one of the adjacent branches, in subtree A, one node at a time, each time the probability of moving one more branch is p (the extension probability).
The node y is moved similarly in subtree B.
- Bolder proposals: increase p
- More modest proposals: decrease p

Changing λ has little effect on the boldness of the proposal.