import unittest
import os
import tempfile

import numpy as np
from numpy import ma
from numpy.testing import assert_array_almost_equal
from netCDF4 import Dataset, default_fillvals

# Test automatic conversion of masked arrays (set_auto_mask())

class SetAutoMaskTestBase(unittest.TestCase):

    """Base object for tests checking the functionality of set_auto_mask()"""

    def setUp(self):

        self.testfile = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name

        self.fillval = default_fillvals["i2"]
        self.v    = np.array([self.fillval, 5, 4, -9999], dtype = "i2")
        self.v_ma = ma.array([self.fillval, 5, 4, -9999], dtype = "i2", mask = [True, False, False, True])

        self.scale_factor = 10.
        self.add_offset = 5.

        self.v_scaled = self.v * self.scale_factor + self.add_offset
        self.v_ma_scaled = self.v_ma * self.scale_factor + self.add_offset

        f = Dataset(self.testfile, 'w')
        _ = f.createDimension('x', None)
        v = f.createVariable('v', "i2", 'x')

        v.missing_value = np.array(-9999, v.dtype)

        # v[0] not set, will be equal to _FillValue
        v[1] = self.v[1]
        v[2] = self.v[2]
        v[3] = v.missing_value

        f.close()


    def tearDown(self):

        os.remove(self.testfile)


class SetAutoMaskFalse(SetAutoMaskTestBase):

    def test_unscaled(self):

        """Testing auto-conversion of masked arrays for set_auto_mask(False)"""

        f = Dataset(self.testfile, "r")

        f.variables["v"].set_auto_mask(False)
        v = f.variables["v"][:]

        self.assertEqual(v.dtype, "i2")
        self.assertTrue(isinstance(v, np.ndarray))
        self.assertTrue(not isinstance(v, ma.masked_array))
        assert_array_almost_equal(v, self.v)

        f.close()


    def test_scaled(self):

        """Testing auto-conversion of masked arrays for set_auto_mask(False) with scaling"""

        # Update test data file

        f = Dataset(self.testfile, "a")
        f.variables["v"].scale_factor = self.scale_factor
        f.variables["v"].add_offset = self.add_offset
        f.close()

        # Note: Scaling variables is default if scale_factor and/or add_offset are present

        f = Dataset(self.testfile, "r")

        f.variables["v"].set_auto_mask(False)
        v = f.variables["v"][:]

        self.assertEqual(v.dtype, "f8")
        self.assertTrue(isinstance(v, np.ndarray))
        self.assertTrue(not isinstance(v, ma.masked_array))
        assert_array_almost_equal(v, self.v_scaled)

        f.close()


class SetAutoMaskTrue(SetAutoMaskTestBase):

    def test_unscaled(self):

        """Testing auto-conversion of masked arrays for set_auto_mask(True)"""

        f = Dataset(self.testfile)

        f.variables["v"].set_auto_mask(True) # The default anyway...
        v_ma = f.variables['v'][:]

        self.assertEqual(v_ma.dtype, "i2")
        self.assertTrue(isinstance(v_ma, np.ndarray))
        self.assertTrue(isinstance(v_ma, ma.masked_array))
        assert_array_almost_equal(v_ma, self.v_ma)
        f.close()

    def test_scaled(self):

        """Testing auto-conversion of masked arrays for set_auto_mask(True)"""

        # Update test data file

        f = Dataset(self.testfile, "a")
        f.variables["v"].scale_factor = self.scale_factor
        f.variables["v"].add_offset = self.add_offset
        f.close()

        # Note: Scaling variables is default if scale_factor and/or add_offset are present

        f = Dataset(self.testfile)

        f.variables["v"].set_auto_mask(True)  # The default anyway...
        v_ma = f.variables['v'][:]

        self.assertEqual(v_ma.dtype, "f8")
        self.assertTrue(isinstance(v_ma, np.ndarray))
        self.assertTrue(isinstance(v_ma, ma.masked_array))
        assert_array_almost_equal(v_ma, self.v_ma_scaled)
        f.close()


class GlobalSetAutoMaskTest(unittest.TestCase):

    def setUp(self):

        self.testfile = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name

        f = Dataset(self.testfile, 'w')

        grp1 = f.createGroup('Group1')
        grp2 = f.createGroup('Group2')
        f.createGroup('Group3')         # empty group

        f.createVariable('var0', "i2", ())
        grp1.createVariable('var1', 'f8', ())
        grp2.createVariable('var2', 'f4', ())

        f.close()

    def tearDown(self):

        os.remove(self.testfile)

    def runTest(self):

        # Note: The default behaviour is to to have both auto-masking and auto-scaling activated.
        #       This is already tested in tst_scaled.py, so no need to repeat here. Instead,
        #       disable auto-masking and auto-scaling altogether.

        f = Dataset(self.testfile, "r")

        # Neither scaling and masking enabled

        f.set_auto_maskandscale(False)

        v0 = f.variables['var0']
        v1 = f.groups['Group1'].variables['var1']
        v2 = f.groups['Group2'].variables['var2']

        self.assertFalse(v0.scale)
        self.assertFalse(v0.mask)

        self.assertFalse(v1.scale)
        self.assertFalse(v1.mask)

        self.assertFalse(v2.scale)
        self.assertFalse(v2.mask)

        # No auto-masking, but auto-scaling

        f.set_auto_maskandscale(True)
        f.set_auto_mask(False)

        self.assertTrue(v0.scale)
        self.assertFalse(v0.mask)

        self.assertTrue(v1.scale)
        self.assertFalse(v1.mask)

        self.assertTrue(v2.scale)
        self.assertFalse(v2.mask)

        f.close()


if __name__ == '__main__':
    unittest.main()
