A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
The library is incorporated into this page, so it should be available in the console now.
In all examples below, var
and semicolons are not shown, and
if a commented-out value is in quotes it means toString
has
been called on the preceding expression.
Big( value ) ⇒ Big
value
Infinity
, NaN
and hexadecimal literal
strings, e.g. '0xff', are not valid.Returns a new instance of a Big number object.
Throws NaN
on an invalid value
.
x = new Big(9) // '9' y = new Big(x) // '9' Big(435.345) // 'new' is optional new Big('5032485723458348569331745.33434346346912144534543') new Big('4.321e+4') // '43210' new Big('-735.0918e-430') // '-7.350918e-428'
number : integer, 0 to 1e+6 inclusive
Default value: 20
The maximum number of decimal places of the results of operations
involving division.
It is relevant only to the div
and sqrt
methods,
and the pow
method when the exponent is negative.
The value will be checked for validity when one of the above methods is
called.
!Big.DP!
will be thrown if the
value is found to be invalid.
Big.DP = 40
number : 0, 1, 2 or 3
Default value: 1
The rounding mode used in the above operations and by
round
,
toExponential
,
toFixed
and
toPrecision
.
Value | Description | BigDecimal equivalent |
---|---|---|
0 |
Rounds towards zero. I.e. truncate, no rounding. |
ROUND_DOWN |
1 |
Rounds towards nearest neighbour. If equidistant, rounds away from zero. |
ROUND_HALF_UP |
2 |
Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour. |
ROUND_HALF_EVEN |
3 | Rounds away from zero. | ROUND_UP |
The value will be checked for validity when one of the above methods is
called.
!Big.RM!
will be thrown if the
value is found to be invalid.
Big.RM = 0
number : integer, -1e+6 to 0 inclusive
Default value: -7
The negative exponent value at and below which
toString
returns exponential notation.
Big.E_NEG = -7 x = new Big(0.00000123) // '0.00000123' e is -6 x = new Big(0.000000123) // '1.23e-7'
JavaScript numbers use exponential notation for negative exponents of
-7
and below.
Regardless of the value of Big.E_NEG
, the
toFixed
method will always return a value
in normal notation and the toExponential
method will always return a value in exponential form.
number : integer, 0 to 1e+6 inclusive
Default value: 21
The positive exponent value at and above which
toString
returns exponential notation.
Big.E_POS = 2 x = new Big(12.3) // '12.3' e is 1 x = new Big(123) // '1.23e+2'
JavaScript numbers use exponential notation for positive exponents of
21
and above.
Regardless of the value of Big.E_POS
, the
toFixed
method will always return a value
in normal notation and the toExponential
method will always return a value in exponential form.
The methods inherited by a Big number instance from its constructor's prototype object.
A Big number is immutable in the sense that it is not changed by its methods.
.abs() ⇒ Big
Returns a Big number whose value is the absolute value, i.e. the magnitude, of this Big number.
x = new Big(-0.8) x.abs() // '0.8'
.cmp( n ) ⇒ number
n
: number|string|Big
Returns | ||
---|---|---|
1 |
If the value of this Big number is greater than the value of
n
|
|
-1 |
If the value of this Big number is less than the value of
n
|
|
0 | If this Big number and n have the same value |
Throws NaN
if n
is invalid.
x = new Big(6) y = new Big(5) x.cmp(y) // 1 y.cmp(x.minus(1)) // 0
.div(n) ⇒ Big
n
: number|string|Big
Returns a Big number whose value is the value of this Big number divided
by n
.
If the result has more fraction digits than is specified by
Big.DP
, it will be rounded to
Big.DP
decimal places using rounding mode
Big.RM
.
Throws NaN
if n
is invalid.
Throws ±Infinity
on division by zero.
Throws NaN
on division of zero by zero.
x = new Big(355) y = new Big(113) x.div(y) // '3.14159292035398230088' Big.DP = 2 x.div(y) // '3.14' x.div(5) // '71'
.eq(n) ⇒ boolean
n
: number|string|Big
Returns true
if the value of this Big equals the value
of n
, otherwise returns false
.
Throws NaN
if n
is invalid.
0 === 1e-324 // true x = new Big(0) x.eq('1e-324') // false Big(-0).eq(x) // true ( -0 === 0 )
.gt(n) ⇒ boolean
n
: number|string|Big
Returns true
if the value of this Big is greater than
the value of n
, otherwise returns false
.
Throws NaN
if n
is invalid.
0.1 > 0.3 - 0.2 // true x = new Big(0.1) x.gt(Big(0.3).minus(0.2)) // false Big(0).gt(x) // false
.gte(n) ⇒ boolean
n
: number|string|Big
Returns true
if the value of this Big is greater than
or equal to the value of n
, otherwise returns
false
.
Throws NaN
if n
is invalid.
0.3 - 0.2 >= 0.1 // false x = new Big(0.3).minus(0.2) x.gte(0.1) // true Big(1).gte(x) // true
.lt(n) ⇒ boolean
n
: number|string|Big
Returns true
if the value of this Big is less than the
value of n
, otherwise returns false
.
Throws NaN
if n
is invalid.
0.3 - 0.2 < 0.1 // true x = new Big(0.3).minus(0.2) x.lt(0.1) // false Big(0).lt(x) // true
.lte(n) ⇒ boolean
n
: number|string|Big
Returns true
if the value of this Big is less than or
equal to the value of n
, otherwise returns
false
.
Throws NaN
if n
is invalid.
0.1 <= 0.3 - 0.2 // false x = new Big(0.1) x.lte(Big(0.3).minus(0.2)) // true Big(-1).lte(x) // true
.minus(n) ⇒ Big
n
: number|string|Big
Returns a Big number whose value is the value of this Big number minus
n
.
Throws NaN
if n
is invalid.
0.3 - 0.1 // 0.19999999999999998 x = new Big(0.3) x.minus(0.1) // '0.2'
.mod(n) ⇒ Big
n
: number|string|Big
Returns a Big number whose value is the value of this Big number modulo
n
, i.e. the integer remainder of dividing this Big number by
n
.
The result will have the same sign as this Big number, and it will match that of Javascript's % operator (within the limits of its precision) and BigDecimal's remainder method.
Throws NaN
if n
is negative or
otherwise invalid.
1 % 0.9 // 0.09999999999999998 x = new Big(1) x.mod(0.9) // '0.1'
.plus(n) ⇒ Big
n
: number|string|Big
Returns a Big number whose value is the value of this Big number plus
n
.
Throws NaN
if n
is invalid.
0.1 + 0.2 // 0.30000000000000004 x = new Big(0.1) y = x.plus(0.2) // '0.3' Big(0.7).plus(x).plus(y) // '1'
.pow( exp ) ⇒ Big
exp
: number : integer, -1e+6 to 1e+6 inclusive
Returns a Big number whose value is the value of this Big number raised to
the power exp
.
If exp
is negative and the result has more fraction digits
than is specified by Big.DP
, it will be
rounded to Big.DP
decimal places using
rounding mode Big.RM
.
Throws !pow!
if exp
is invalid.
Note: High value exponents may cause this method to be slow to return.
Math.pow(0.7, 2) // 0.48999999999999994 x = new Big(0.7) x.pow(2) // '0.49' Big.DP = 20 Big(3).pow(-2) // '0.11111111111111111111' new Big(123.456).pow(1000).toString().length // 5099 new Big(2).pow(1e+6) // Time taken (Node.js): 9 minutes 34 secs.
.round( [dp [, rm]] )
⇒ Big
dp
: number : integer, 0 to 1e+6 inclusive
rm
: number : 0, 1, 2 or 3
Returns a Big number whose value is the value of this Big number rounded
using rounding mode rm
to a maximum of dp
decimal places.
if dp
is omitted or is null
or undefined, the
return value is n
rounded to a whole number.
if rm
is omitted or is null
or
undefined, the current Big.RM
setting is
used.
Throws !round!
if dp
is invalid.
Throws !Big.RM!
if rm
is invalid.
x = 123.45 Math.round(x) // 123 y = new Big(x) y.round() // '123' y.round(2) // '123.45' y.round(10) // '123.45' y.round(1, 0) // '123.4' y.round(1, 1) // '123.5' y.round(1, 2) // '123.4' y.round(1, 3) // '123.5' y // '123.45'
.sqrt() ⇒ Big
Returns a Big number whose value is the square root of this Big number.
If the result has more fraction digits than is specified by
Big.DP
, it will be rounded to
Big.DP
decimal places using rounding mode
Big.RM
.
Throws NaN
if this Big number is negative.
x = new Big(16) x.sqrt() // '4' y = new Big(3) y.sqrt() // '1.73205080756887729353'
.times(n) ⇒ Big
n
: number|string|Big
Returns a Big number whose value is the value of this Big number times
n
.
Throws NaN
if n
is invalid.
0.6 * 3 // 1.7999999999999998 x = new Big(0.6) y = x.times(3) // '1.8' Big('7e+500').times(y) // '1.26e+501'
.toExponential( [dp] ) ⇒
string
dp
: number : integer, 0 to 1e+6 inclusive
Returns a string representing the value of this Big number in exponential
notation to a fixed number of decimal places dp
.
If the value of this Big number in exponential notation has more digits to
the right of the decimal point than is specified by dp
, the
return value will be rounded to dp
decimal places using
rounding mode Big.RM
.
If the value of this Big number in exponential notation has fewer digits
to the right of the decimal point than is specified by dp
,
the return value will be appended with zeros accordingly.
If dp
is omitted, or is null
or undefined, the
number of digits after the decimal point defaults to the minimum number of
digits necessary to represent the value exactly.
Throws !toExp!
if dp
is invalid.
x = 45.6 y = new Big(x) x.toExponential() // '4.56e+1' y.toExponential() // '4.56e+1' x.toExponential(0) // '5e+1' y.toExponential(0) // '5e+1' x.toExponential(1) // '4.6e+1' y.toExponential(1) // '4.6e+1' x.toExponential(3) // '4.560e+1' y.toExponential(3) // '4.560e+1'
.toFixed( [dp] ) ⇒
string
dp
: number : integer, 0 to 1e+6 inclusive
Returns a string representing the value of this Big number in normal
notation to a fixed number of decimal places dp
.
If the value of this Big number in normal notation has more digits to the
right of the decimal point than is specified by dp
, the
return value will be rounded to dp
decimal places using
rounding mode Big.RM
.
If the value of this Big number in normal notation has fewer fraction
digits then is specified by dp
, the return value will be
appended with zeros accordingly.
Unlike Number.prototype.toFixed
, which returns
exponential notation if a number is greater or equal to 1021,
this method will always return normal notation.
If dp
is omitted, or is null
or
undefined, then the return value is simply the value in normal notation.
This is also unlike Number.prototype.toFixed
, which returns
the value to zero decimal places.
Throws !toFix!
if dp
is invalid.
x = 45.6 y = new Big(x) x.toFixed() // '46' y.toFixed() // '45.6' y.toFixed(0) // '46' x.toFixed(3) // '45.600' y.toFixed(3) // '45.600'
.toPrecision( [sd] ) ⇒
string
sd
: number : integer, 1 to 1e+6 inclusive
Returns a string representing the value of this Big number to the
specified number of significant digits sd
.
If the value of this Big number has more digits than is specified by
sd
, the return value will be rounded to sd
significant digits using rounding mode
Big.RM
.
If the value of this Big number has fewer digits than is specified by
sd
, the return value will be appended with zeros accordingly.
If sd
is less than the number of digits necessary to
represent the integer part of the value in normal notation, then
exponential notation is used.
If sd
is omitted, or is null
or undefined, then
the return value is the same as .toString()
.
Throws !toPre!
if sd
is invalid.
x = 45.6 y = new Big(x) x.toPrecision() // '45.6' y.toPrecision() // '45.6' x.toPrecision(1) // '5e+1' y.toPrecision(1) // '5e+1' x.toPrecision(5) // '45.600' y.toPrecision(5) // '45.600'
.toString() ⇒ string
Returns a string representing the value of this Big number.
If this Big number has a positive exponent that is equal to or greater than 21, or a negative exponent equal to or less than -7, then exponential notation is returned.
The point at which toString
returns exponential rather than
normal notation can be adjusted by changing the value of
Big.E_POS
and
Big.E_NEG
. By default, Big numbers
correspond to Javascript's number type in this regard.
x = new Big('9.99e+20') x.toString() // '999000000000000000000' y = new Big('1E21') y.toString() // '1e+21'
.valueOf() ⇒ string
As toString
.
x = new Big('177.7e+457') x.valueOf() // '1.777e+459'
.toJSON() ⇒ string
As toString
.
x = new Big('177.7e+457') y = new Big(235.4325) z = new Big('0.0098074') str = JSON.stringify( [x, y, z] ) JSON.parse( str, function ( k, v ) { return k === '' ? v : new Big(v) } ) // Returns an array of three Big numbers.
A Big number is an object with three properties:
Property | Description | Type | Value |
---|---|---|---|
c | coefficient* | number[] |
Array of single digits |
e | exponent | number | Integer, -1e+6 to 1e+6 inclusive |
s | sign | number | -1 or 1 |
*significand
The value of a Big number is stored in a normalised decimal floating point
format which corresponds to the value's toExponential
form,
with the decimal point to be positioned after the most significant
(left-most) digit of the coefficient.
Note that, as with Javascript numbers, the original exponent and fractional trailing zeros are not preserved.
x = new Big(0.123) // '0.123' x.toExponential() // '1.23e-1' x.c // '1,2,3' x.e // -1 x.s // 1 y = new Number(-123.4567000e+2) // '-12345.67' y.toExponential() // '-1.234567e+4' z = new Big('-123.4567000e+2') // '-12345.67' z.toExponential() // '-1.234567e+4' z.c // '1,2,3,4,5,6,7' z.e // 4 z.s // -1
A Big number is mutable in the sense that the value of its properties can
be changed.
For example, to rapidly shift a value by a power of 10:
x = new Big('1234.000') // '1234' x.toExponential() // '1.234e+3' x.c // '1,2,3,4' x.e // 3 x.e = -5 x // '0.00001234'
If changing the coefficient array directly, which is not recommended, be careful to avoid leading or trailing zeros (unless zero itself is being represented).
Minus zero is a valid Big number value, but like Javascript numbers the minus sign is not shown.
x = new Number(-0) // 0 1 / x == -Infinity // true y = new Big(-0) // '0' y.c // '0' [0].toString() y.e // 0 y.s // -1
The errors that are thrown are instances of Error
with
name
BigError
and message as
shown in the table below.
Method(s) | Error message | Thrown on |
---|---|---|
Big
|
NaN |
Invalid number |
div |
±Infinity |
Division by zero |
NaN |
Division of zero by zero | |
!Big.DP! | Invalid Big.DP | |
!Big.RM! | Invalid Big.RM | |
mod |
NaN |
Modulo zero |
pow |
!pow! | Invalid exponent |
!Big.DP! | Invalid Big.DP | |
!Big.RM! | Invalid Big.RM | |
round |
!round! | Invalid dp |
!Big.RM! | Invalid rm/Big.RM | |
sqrt |
NaN |
Negative number |
!Big.DP! | Invalid Big.DP | |
!Big.RM! | Invalid Big.RM | |
toExponential |
!toExp! | Invalid dp |
!Big.RM! | Invalid Big.RM | |
toFixed |
!toFix! | Invalid dp |
!Big.RM! | Invalid Big.RM | |
toPrecision |
!toPre! | Invalid sd |
!Big.RM! | Invalid Big.RM |
To convert a Big number to a primitive number, parseFloat
or
any of the other methods for converting a string to a number can be used.
x = new Big('12345.6789') parseFloat(x) // 12345.6789 Number(x) // 12345.6789 +x // 12345.6789 x * 1 // 12345.6789 x / 1 // 12345.6789 x - 0 // 12345.6789 x + 0 // '12345.67890' (string concatenation, do not use!)
If converting to an integer be aware that parseInt
doees not
handle exponential notation.
x = new Big('9.87654e+32') parseInt(x) // 9 parseInt(+x) // 9 parseInt(x.toFixed()) // 9.87654e+32 parseInt(x.round()) // 9.87654e+32
The Math
methods can also be used.
x = new Big('1234.56') Math.floor(x) // 1234 Math.round(x) // 1235
toPrecision
returns a string representing
the value of a Big number rounded to a specified number of significant
digits. Or, the number of significant digits of a Big number can be set by
truncating the array that stores its coefficient. For example, using the
array's length property:
x = new Big('987.654321') len = x.c.length // 9 if (len > 6) x.c.length = 6 x // 987.654
This library uses a global configuration for the decimal places and rounding mode used by division operations, so it is just a matter of altering this as required.
Big.DP = 10 y = x.sqrt() Big.DP = 0 Big.RM = 1 z = x.div(3)
There is also the ability to create separate Big number constructors each
with their own particular DP
and RM
settings.
See below.
Finally, there is the option of redefining the relevant prototype method
as required. For example, the following would enable a decimal
places and rounding mode to be passed to the div
method.
Big.prototype.div = (function () { var div = Big.prototype.div; return function (n, dp, rm) { var result, Big = this.constructor, _dp = Big.DP, _rm = Big.RM; if (dp != null) Big.DP = dp; if (rm != null) Big.RM = rm; result = div.call(this, n); Big.DP = _dp; Big.RM = _rm; return result; } })(); var dp = 10; var round_up = 2; x = x.div(y, dp, round_up);
From v3.0.0, it is possible to have multiple Big number
constructors each with their own particular DP
and
RM
settings which apply to all Big numbers created from it.
/* Create an additional Big number constructor by calling the original Big number constructor without using new and without any argument. */ Big10 = Big(); // Set the decimal places of division operations for each constructor. Big.DP = 3; Big10.DP = 10; x = Big(5); y = Big10(5); x.div(3) // 1.667 y.div(3) // 1.6666666667
Big numbers created by different constructors can be used together in
operations, and it is the DP
and RM
setting of
the Big number that an operation is called upon that will apply.
In the interest of memory efficiency, all Big number constructors share
the same prototype
object, so while the DP
and
RM
(and any other own properties) of a constructor are
isolated and untouchable by another, its prototype methods are not.
Many arbitrary-precision libraries retain trailing fractional zeros as they can indicate the precision of a value. This can be useful but the results of arithmetic operations can be misleading.
x = new BigDecimal("1.0") y = new BigDecimal("1.1000") z = x.add(y) // 2.1000 x = new BigDecimal("1.20") y = new BigDecimal("3.45000") z = x.multiply(y) // 4.1400000
To specify the precision of a value is to imply that the value lies within a certain range.
In the first example, x
has a value of 1.0. The trailing zero
shows the precision of the value, implying that the value is in the range
0.95 to 1.05. Similarly, the precision indicated by the trailing zeros of
y
indicates that the value is in the range 1.09995 to
1.10005. If we add the two lowest values in the ranges we get 0.95 +
1.09995 = 2.04995 and if we add the two highest values we get 1.05 +
1.10005 = 2.15005, so the range of the result of the addition implied by
the precision of its operands is 2.04995 to 2.15005. The result given by
BigDecimal of 2.1000 however, indicates that the value is in the range
2.09995 to 2.10005 and therefore the precision implied by its trailing
zeros is misleading.
In the second example, the true range is 4.122744 to 4.157256 yet the BigDecimal answer of 4.1400000 indicates a range of 4.13999995 to 4.14000005. Again, the precision implied by the trailing zeros is misleading.
This library, like binary floating-point and most calculators, does not
retain trailing fractional zeros.
Instead, the toExponential
, toFixed
and
toPrecision
methods enable trailing zeros to be added if and
when required.