{{alias}}( N, order, x, strideX, y, strideY ) Simultaneously sorts two double-precision floating-point strided arrays based on the sort order of the first array using Shellsort. The `N` and `stride` parameters determine which elements in `x` and `y` are accessed at runtime. Indexing is relative to the first index. To introduce an offset, use typed array views. If `N <= 0` or `order == 0`, the function leaves `x` and `y` unchanged. The algorithm distinguishes between `-0` and `+0`. When sorted in increasing order, `-0` is sorted before `+0`. When sorted in decreasing order, `-0` is sorted after `+0`. The algorithm sorts `NaN` values to the end. When sorted in increasing order, `NaN` values are sorted last. When sorted in decreasing order, `NaN` values are sorted first. The algorithm has space complexity O(1) and worst case time complexity O(N^(4/3)). The algorithm is efficient for *shorter* strided arrays (typically N <= 50). The algorithm is *unstable*, meaning that the algorithm may change the order of strided array elements which are equal or equivalent (e.g., `NaN` values). The input strided arrays are sorted *in-place* (i.e., the input strided arrays are *mutated*). Parameters ---------- N: integer Number of indexed elements. order: number Sort order. If `order < 0`, the function sorts `x` in decreasing order. If `order > 0`, the function sorts `x` in increasing order. x: Float64Array First input array. strideX: integer Index increment for `x`. y: Float64Array Second input array. strideY: integer Index increment for `y`. Returns ------- x: Float64Array Input array `x`. Examples -------- // Standard Usage: > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] ); > var y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] ); > {{alias}}( x.length, 1, x, 1, y, 1 ) [ -4.0, -2.0, 1.0, 3.0 ] > y [ 3.0, 1.0, 0.0, 2.0 ] // Using `N` and `stride` parameters: > x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] ); > y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] ); > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > {{alias}}( N, -1, x, 2, y, 2 ) [ 3.0, -2.0, 1.0, -4.0 ] > y [ 2.0, 1.0, 0.0, 3.0 ] // Using view offsets: > var x0 = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] ); > var x1 = new {{alias:@stdlib/array/float64}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); > var y0 = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] ); > var y1 = new {{alias:@stdlib/array/float64}}( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); > N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 ); > {{alias}}( N, 1, x1, 2, y1, 2 ) [ -4.0, 3.0, -2.0 ] > x0 [ 1.0, -4.0, 3.0, -2.0 ] > y0 [ 0.0, 3.0, 2.0, 1.0 ] {{alias}}.ndarray( N, order, x, strideX, offsetX, y, strideY, offsetY ) Simultaneously sorts two double-precision floating-point strided arrays based on the sort order of the first array using Shellsort and alternative indexing semantics. While typed array views mandate a view offset based on the underlying buffer, the `offset` parameter supports indexing semantics based on a starting index. Parameters ---------- N: integer Number of indexed elements. order: number Sort order. If `order < 0`, the function sorts `x` in decreasing order. If `order > 0`, the function sorts `x` in increasing order. x: Float64Array First input array. strideX: integer Index increment for `x`. offsetX: integer Starting index of `x`. y: Float64Array Second input array. strideY: integer Index increment for `y`. offsetY: integer Starting index of `y`. Returns ------- x: Float64Array Input array `x`. Examples -------- // Standard Usage: > var x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] ); > var y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] ); > {{alias}}.ndarray( x.length, 1, x, 1, 0, y, 1, 0 ) [ -4.0, -2.0, 1.0, 3.0 ] > y [ 3.0, 1.0, 0.0, 2.0 ] // Using an index offset: > x = new {{alias:@stdlib/array/float64}}( [ 1.0, -2.0, 3.0, -4.0 ] ); > y = new {{alias:@stdlib/array/float64}}( [ 0.0, 1.0, 2.0, 3.0 ] ); > var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 ); > {{alias}}.ndarray( N, 1, x, 2, 1, y, 2, 1 ) [ 1.0, -4.0, 3.0, -2.0 ] > y [ 0.0, 3.0, 2.0, 1.0 ] See Also --------