1.7 A Nelder-Mead simplex algorithm
Helptext:
NMSMAX Nelder-Mead simplex method for direct search optimization.
[x, fmax, nf] = NMSMAX(FUN, x0, STOPIT, SAVIT) attempts to
maximize the function FUN, using the starting vector x0.
The Nelder-Mead direct search method is used.
Output arguments:
x = vector yielding largest function value found,
fmax = function value at x,
nf = number of function evaluations.
The iteration is terminated when either
- the relative size of the simplex is <= STOPIT(1)
(default 1e-3),
- STOPIT(2) function evaluations have been performed
(default inf, i.e., no limit), or
- a function value equals or exceeds STOPIT(3)
(default inf, i.e., no test on function values).
The form of the initial simplex is determined by STOPIT(4):
STOPIT(4) = 0: regular simplex (sides of equal length, the default)
STOPIT(4) = 1: right-angled simplex.
Progress of the iteration is not shown if STOPIT(5) = 0 (default 1).
STOPIT(6) indicates the direction (ie. minimization or
maximization.) Default is 1, maximization.
set STOPIT(6)=-1 for minimization
If a non-empty fourth parameter string SAVIT is present, then
`SAVE SAVIT x fmax nf' is executed after each inner iteration.
NB: x0 can be a matrix. In the output argument, in SAVIT saves,
and in function calls, x has the same shape as x0.
NMSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional
arguments to be passed to fun, via feval(fun,x,P1,P2,...).
References:
N. J. Higham, Optimization by direct search in matrix computations,
SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993.
C. T. Kelley, Iterative Methods for Optimization, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1999.