"""
Plot the log-likelihood contours of a distribution
==================================================
"""

# %%
# In this example, we show how to plot the bidimensionnal log-likelihood contours of function given a sample.

# %%
from matplotlib import pylab as plt
import openturns.viewer as viewer
import openturns as ot

ot.RandomGenerator.SetSeed(0)
ot.Log.Show(ot.Log.NONE)

# %%
# Generate a sample
# -----------------

# %%
# We create a :class:`~openturns.TruncatedNormal` and generate a small sample.

# %%
a = -1
b = 2.5
mu = 2.0
sigma = 3.0
distribution = ot.TruncatedNormal(mu, sigma, a, b)
sample = distribution.getSample(11)

# %%
# In order to see the distribution and the sample, we draw the PDF of the distribution and generate a cloud which `X` coordinates are the sample values.

# %%
graph = distribution.drawPDF()
graph.setLegends(["TruncatedNormal"])
zeros = ot.Sample(sample.getSize(), 1)
cloud = ot.Cloud(sample, zeros)
cloud.setLegend("Sample")
graph.add(cloud)
graph.setLegendPosition("upper left")
view = viewer.View(graph)


# %%
# The following function computes the log-likelihood of a :class:`~openturns.TruncatedNormal`
# which mean and standard deviations are given as input arguments.
# The lower and upper bounds of the distribution are computed as minimum and maximum of the sample.

# %%
# Define the log-likelihood function
# ----------------------------------

# %%
# The following function evaluates the log-likelihood function given a point :math:`X=(\mu,\sigma`).
# In order to evaluate the likelihood on the sample, we use a trick: we evaluate
# the `computeMean` method on the log-PDF sample, then multiply by the sample size.
# This is much faster than using a `for` loop.


# %%
def logLikelihood(X):
    """
    Evaluate the log-likelihood of a TruncatedNormal on a sample.
    """
    samplesize = sample.getSize()
    mu = X[0]
    sigma = X[1]
    a = sample.getMin()[0]
    b = sample.getMax()[0]
    delta = (b - a) / samplesize
    a -= delta
    b += delta
    distribution = ot.TruncatedNormal(mu, sigma, a, b)
    samplelogpdf = distribution.computeLogPDF(sample)
    loglikelihood = samplelogpdf.computeMean() * samplesize
    return loglikelihood


# %%
# With the draw method
# --------------------

# %%
# In this section, we use the `draw` method which is available for any `Function` which has 1 or 2 input arguments.
# In our case, the log-likelihood function has two inputs: :math:`x_0=\mu` and :math:`x_1=\sigma`.

# %%
# Draw the log-likelihood function with the `draw` method: this is much faster than using a `for` loop.
# In order to print LaTeX `X` and `Y` labels, we use the `"r"` character in front of the string containing the LaTeX command.

# %%
logLikelihoodFunction = ot.PythonFunction(2, 1, logLikelihood)
graphBasic = logLikelihoodFunction.draw([-3.0, 0.1], [5.0, 7.0], [50] * 2)
graphBasic.setXTitle(r"$\mu$")
graphBasic.setYTitle(r"$\sigma$")
view = viewer.View(graphBasic)

# %%
# Customizing the number of levels
# --------------------------------

# %%
# The level values are computed from the quantiles of the data, so that the contours are equally spaced.
# We can configure the number of levels by setting the `Contour-DefaultLevelsNumber` key in the :class:`~openturns.ResourceMap`.

# %%
ot.ResourceMap.SetAsUnsignedInteger("Contour-DefaultLevelsNumber", 5)
logLikelihoodFunction = ot.PythonFunction(2, 1, logLikelihood)
graphBasic = logLikelihoodFunction.draw([-3.0, 0.1], [5.0, 7.0], [50] * 2)
graphBasic.setXTitle(r"$\mu$")
graphBasic.setYTitle(r"$\sigma$")
view = viewer.View(graphBasic)

# %%
# We get the underlying `Contour` object as a `Drawable`.

contour = graphBasic.getDrawable(0)

# %%
# To be able to use specific `Contour` methods like `buildDefaultLevels`, we need to use the method named `getImplementation`.

contour = contour.getImplementation()
contour.buildDefaultLevels(50)

manyLevelGraph = ot.Graph()
manyLevelGraph.add(contour)
view = viewer.View(manyLevelGraph)

# %%
# Using a rank-based normalization of the colors
# ----------------------------------------------

# %%
# In the previous plots, there was little color variation for isolines corresponding to large log-likelihood values.
# This is due to a steep cliff visible for low values of :math:`\sigma`.
# To make the color variation clearer around -13, we use a normalization based on the rank of the level curve and not on its value.
contour.setColorMapNorm("rank")
rankGraph = ot.Graph()
rankGraph.add(contour)
view = viewer.View(rankGraph)

# %%
# Fill the contour graph
# ----------------------

# %%
# Areas between contour lines can be colored by requesting a filled outline.

# sphinx_gallery_thumbnail_number = 6
contour.setIsFilled(True)
filledGraph = ot.Graph()
filledGraph.add(contour)
view = viewer.View(filledGraph)

# %%
# Getting the level values
# ------------------------

# %%
# The level values can be retrieved with the `getLevels` method.

# %%
drawables = graphBasic.getDrawables()
levels = drawables[0].getLevels()
levels

# %%
# Monochrome contour plot
# -----------------------

# %%
# We first configure the contour plot.
# We use the `getDrawable` method to take the first contour as the only one with multiple levels.
# Then we use the `setLevels` method: we could have changed the levels.
# We use the `setColor` method to get a monochrome contour.
# In order to inline the level values labels, we use the `setDrawLabels` method.

# %%
contour = graphBasic.getDrawable(0)
contour.setLevels(levels)
contour.setDrawLabels(True)
contour.setColor("red")

# %%
# Hide the color bar.
# The method to do this is not available to generic Drawables,
# so we need to get the actual `Contour` object.

contour = contour.getImplementation()
contour.setColorBarPosition("")

# %%
# Then we create a new graph. Finally, we use `setDrawables` to define this `Contour` object as the single Drawable.

graphFineTune = ot.Graph("Log-Likelihood", r"$\mu$", r"$\sigma$", True, "")
graphFineTune.setDrawables([contour])
view = viewer.View(graphFineTune)

# %%
# Set multiple colors manually
# ----------------------------

# %%
# The :class:`~openturns.Contour` class does not allow us to manually set multiple colors.
# Here we show how to assign explicit colors to the different contour lines by passing keyword
# arguments to the class:`~openturns.viewer.View` class.

# Build a range of colors corresponding to the Tableau palette
palette = ot.Drawable.BuildTableauPalette(len(levels))
view = viewer.View(graphFineTune, contour_kw={"colors": palette, "cmap": None})

plt.show()

# %%
# Reset default settings
ot.ResourceMap.Reload()
