#! /usr/bin/env python

import openturns as ot

ot.TESTPREAMBLE()


def cleanSymmetricTensor(inSymmetricTensor):
    rowDim = inSymmetricTensor.getNbRows()
    colDim = inSymmetricTensor.getNbColumns()
    sheetDim = inSymmetricTensor.getNbSheets()
    for i in range(rowDim):
        for j in range(colDim):
            for k in range(sheetDim):
                inSymmetricTensor[i, j, k] = 1.0e-4 * round(
                    1.0e4 * inSymmetricTensor[i, j, k]
                )
                if abs(inSymmetricTensor[i, j, k]) < 1.0e-6:
                    inSymmetricTensor[i, j, k] = 0.0
    return inSymmetricTensor


meanPoint = ot.Point(1)
sigma = ot.Point(1)
R = ot.CorrelationMatrix(1)

# Create a collection of distribution
aCollection = ot.DistributionCollection()

aCollection.add(ot.Uniform(-1.0, 2.0))
aCollection.add(ot.Gamma(2.0, 2.0, 0.0))

dim = aCollection.getSize()

# Instantiate one distribution object
distribution = ot.JointDistribution(aCollection, ot.IndependentCopula(dim))
# Test for sampling
size = 10000
sample = distribution.getSample(size)
print("sample first=", repr(sample[0]), " last=", repr(sample[size - 1]))
print("sample mean=", repr(sample.computeMean()))
print("sample covariance=", repr(sample.computeCovariance()))

transform = distribution.getIsoProbabilisticTransformation()
print("isoprobabilistic transformation=", repr(transform))
transformedSample = transform(sample)
print(
    "transformed sample first=",
    repr(transformedSample[0]),
    " last=",
    repr(transformedSample[size - 1]),
)
print("transformed sample mean=", repr(transformedSample.computeMean()))
print("transformed sample covariance=", repr(transformedSample.computeCovariance()))

# Test for evaluation
inverseTransform = distribution.getInverseIsoProbabilisticTransformation()
print("inverse isoprobabilistic transformation=", repr(inverseTransform))
transformedBackSample = inverseTransform(transformedSample)
print(
    "transformed back sample first=",
    repr(transformedBackSample[0]),
    " last=",
    repr(transformedBackSample[size - 1]),
)
print("transformed back sample mean=", repr(transformedBackSample.computeMean()))
print(
    "transformed back sample covariance=",
    repr(transformedBackSample.computeCovariance()),
)
point = ot.Point(dim, 1.0)
print("point=", repr(point))
transformedPoint = transform(point)
print("transform value at point        =", repr(transformedPoint))
print("transform gradient at point     =", repr(transform.gradient(point)))
print(
    "transform gradient at point (FD)=",
    repr(
        ot.CenteredFiniteDifferenceGradient(1.0e-5, transform.getEvaluation()).gradient(
            point
        )
    ),
)
print(
    "transform hessian at point      =",
    repr(cleanSymmetricTensor(transform.hessian(point))),
)
print(
    "transform hessian at point (FD) =",
    repr(
        cleanSymmetricTensor(
            ot.CenteredFiniteDifferenceHessian(
                1.0e-4, transform.getEvaluation()
            ).hessian(point)
        )
    ),
)
print(
    "inverse transform value at transformed point        =",
    repr(inverseTransform(transformedPoint)),
)
print(
    "inverse transform gradient at transformed point     =",
    repr(inverseTransform.gradient(transformedPoint)),
)
print(
    "inverse transform gradient at transformed point (FD)=",
    repr(
        ot.CenteredFiniteDifferenceGradient(
            1.0e-5, inverseTransform.getEvaluation()
        ).gradient(transformedPoint)
    ),
)
print(
    "inverse transform hessian at transformed point      =",
    repr(cleanSymmetricTensor(inverseTransform.hessian(transformedPoint))),
)
print(
    "inverse transform hessian at transformed point (FD) =",
    repr(
        cleanSymmetricTensor(
            ot.CenteredFiniteDifferenceHessian(
                1.0e-4, inverseTransform.getEvaluation()
            ).hessian(transformedPoint)
        )
    ),
)

# Test for parameters
print("parameters gradient at point=", repr(transform.parameterGradient(point)))

# Validation using finite difference
eps = 1e-5
factor = 1.0 / (2.0 * eps)
gradient = ot.Matrix(5, 2)

# dT/dp0
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0 + eps, 2.0)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0 - eps, 2.0)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[0, 0] = dTdp[0]
gradient[0, 1] = dTdp[1]
# dT/dp1
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0, 2.0 + eps)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0, 2.0 - eps)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[1, 0] = dTdp[0]
gradient[1, 1] = dTdp[1]
# dT/dp2
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0 + eps, 2.0, 0.0)
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0 - eps, 2.0, 0.0)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[2, 0] = dTdp[0]
gradient[2, 1] = dTdp[1]

# dT/dp3
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0 + eps, 0.0)
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0 - eps, 0.0)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[3, 0] = dTdp[0]
gradient[3, 1] = dTdp[1]

# dT/dp4
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0, 0.0 + eps)
left = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0, 0.0 - eps)
right = ot.JointDistribution(coll).getIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[4, 0] = dTdp[0]
gradient[4, 1] = dTdp[1]

print("parameters gradient (FD)    =", repr(gradient))

# Test for parameters
print(
    "(inverse) parameters gradient at point=",
    repr(inverseTransform.parameterGradient(point)),
)

# dT/dp0
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0 + eps, 2.0)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0 - eps, 2.0)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[0, 0] = dTdp[0]
gradient[0, 1] = dTdp[1]
# dT/dp1
coll = ot.DistributionCollection(dim)
coll[0] = ot.Uniform(-1.0, 2.0 + eps)
coll[1] = aCollection[1]
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[0] = ot.Uniform(-1.0, 2.0 - eps)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[1, 0] = dTdp[0]
gradient[1, 1] = dTdp[1]
# dT/dp2
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0 + eps, 2.0, 0.0)
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0 - eps, 2.0, 0.0)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[2, 0] = dTdp[0]
gradient[2, 1] = dTdp[1]
# dT/dp3
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0 + eps, 0.0)
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0 - eps, 0.0)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[3, 0] = dTdp[0]
gradient[3, 1] = dTdp[1]
# dT/dp4
coll = ot.DistributionCollection(dim)
coll[0] = aCollection[0]
coll[1] = ot.Gamma(2.0, 2.0, 0.0 + eps)
left = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
coll[1] = ot.Gamma(2.0, 2.0, 0.0 - eps)
right = ot.JointDistribution(coll).getInverseIsoProbabilisticTransformation()
dTdp = (left(point) - right(point)) * factor
gradient[4, 0] = dTdp[0]
gradient[4, 1] = dTdp[1]

print("(inverse) parameters gradient (FD)    =", repr(gradient))
