#!/usr/bin/env python

import openturns as ot

#
# Physical model
#

formulas = [
    "min(0.1 * (u1 - u2)^2.0 - (u1 + u2) / sqrt(2.0) + 3.0, 0.1 * (u1 - u2)^2.0 + (u1 + u2) / sqrt(2.0) + 3.0, u1 - u2 + 3.5 * sqrt(2.0), -u1 + u2 + 3.5 * sqrt(2.0))"
]
limitState = ot.SymbolicFunction(["u1", "u2"], formulas)
dim = limitState.getInputDimension()

#
# Probabilistic model
#

mean = ot.Point(dim, 0.0)

sigma = ot.Point(dim, 1.0)

R = ot.IdentityMatrix(dim)
myDistribution = ot.Normal(mean, sigma, R)

#
# Limit state
#

vect = ot.RandomVector(myDistribution)

output = ot.CompositeRandomVector(limitState, vect)

myEvent = ot.ThresholdEvent(output, ot.Less(), 0.0)

#
# Computation
#
bs = 1

# Monte Carlo
experiment = ot.MonteCarloExperiment()
myMC = ot.ProbabilitySimulationAlgorithm(myEvent, experiment)
myMC.setMaximumOuterSampling(int(1e6) // bs)
myMC.setBlockSize(bs)
myMC.setMaximumCoefficientOfVariation(-1.0)
myMC.run()

#
# SubsetSampling
mySS = ot.SubsetSampling(myEvent)
mySS.setMaximumOuterSampling(10000 // bs)
mySS.setBlockSize(bs)
mySS.run()
#
# Results
#

# Monte Carlo
resultMC = myMC.getResult()
PFMC = resultMC.getProbabilityEstimate()
CVMC = resultMC.getCoefficientOfVariation()
variance_PF_MC = resultMC.getVarianceEstimate()
length90MC = resultMC.getConfidenceLength(0.90)
N_MC = resultMC.getOuterSampling() * resultMC.getBlockSize()

#
# SubsetSampling
resultSS = mySS.getResult()
PFSS = resultSS.getProbabilityEstimate()
CVSS = resultSS.getCoefficientOfVariation()
variance_PF_SS = resultSS.getVarianceEstimate()
length90SS = resultSS.getConfidenceLength(0.90)
N_SS = resultSS.getOuterSampling() * resultSS.getBlockSize()

#

print("")
print(
    "************************************************************************************************"
)
print(
    "**************************************** MONTE CARLO *******************************************"
)
print(
    "************************************************************************************************"
)
print("Pf estimation = %.5e" % PFMC)
print("Pf Variance estimation = %.5e" % variance_PF_MC)
print("CoV = %.5f" % CVMC)
print("90% Confidence Interval =", "%.5e" % length90MC)
print(
    "CI at 90% =[",
    "%.5e" % (PFMC - 0.5 * length90MC),
    "; %.5e" % (PFMC + 0.5 * length90MC),
    "]",
)
print("Limit state calls =", N_MC)
print(
    "************************************************************************************************"
)
print("")
print(
    "************************************************************************************************"
)
print(
    "******************************************* SUBSET SAMPLING **********************************************"
)
print(
    "************************************************************************************************"
)
print("Pf estimation = %.5e" % PFSS)
print("Pf Variance estimation = %.5e" % variance_PF_SS)
print("CoV = %.5f" % CVSS)
print("90% Confidence Interval =", "%.5e" % length90SS)
print(
    "CI at 90% =[",
    "%.5e" % (PFSS - 0.5 * length90SS),
    "; %.5e" % (PFSS + 0.5 * length90SS),
    "]",
)
print("Limit state calls =", N_SS)
print(
    "************************************************************************************************"
)
print("")
