"""
Cross Entropy Importance Sampling
=================================
"""

# %%
#
# The objective is to evaluate a failure probability using Cross Entropy Importance Sampling.
# Two versions in the standard or physical spaces are implemented.
# See :class:`~openturns.StandardSpaceCrossEntropyImportanceSampling` and :class:`~openturns.PhysicalSpaceCrossEntropyImportanceSampling`.
# We consider the simple stress beam example: :ref:`axial stressed beam <use-case-stressed-beam>`.


# %%
# First, we import the python modules:

# %%
import openturns as ot
import openturns.viewer as otv
from openturns.usecases import stressed_beam

# %%
# Create the probabilistic model
# ------------------------------

# %%
axialBeam = stressed_beam.AxialStressedBeam()
distribution = axialBeam.distribution
print("Initial distribution:", distribution)

# %%
# Draw the limit state function :math:`g` to help to understand the shape of the limit state.

# %%
g = axialBeam.model
graph = ot.Graph("Simple stress beam", "R", "F", True, "upper right")
drawfunction = g.draw([1.8e6, 600], [4e6, 950.0], [100] * 2)
graph.add(drawfunction)
view = otv.View(graph)

# %%
# Create the output random vector :math:`Y = g(\vect{X})` with :math:`\vect{X} = (R,F)`.

# %%
X = ot.RandomVector(distribution)
Y = ot.CompositeRandomVector(g, X)

# %%
# Create the event :math:`\{ Y = g(\vect{X}) \leq 0 \}`
# -----------------------------------------------------

# %%
threshold = 0.0
event = ot.ThresholdEvent(Y, ot.Less(), 0.0)

# %%
# Evaluate the probability with the Standard Space Cross Entropy
# --------------------------------------------------------------

# %%
# We choose to set the intermediate quantile level to 0.35.

# %%
standardSpaceIS = ot.StandardSpaceCrossEntropyImportanceSampling(event, 0.35)

# %%
# The sample size at each iteration can be changed by the following accessor:

# %%
standardSpaceIS.setMaximumOuterSampling(1000)

# %%
# Now we can run the algorithm and get the results.

# %%
standardSpaceIS.run()
standardSpaceISResult = standardSpaceIS.getResult()
proba = standardSpaceISResult.getProbabilityEstimate()
print("Proba Standard Space Cross Entropy IS = ", proba)
print(
    "Current coefficient of variation = ",
    standardSpaceISResult.getCoefficientOfVariation(),
)

# %%
# The length of the confidence interval of level :math:`95\%` is:

# %%
length95 = standardSpaceISResult.getConfidenceLength()
print("Confidence length (0.95) = ", standardSpaceISResult.getConfidenceLength())

# %%
# which enables to build the confidence interval.

# %%
print(
    "Confidence interval (0.95) = [",
    proba - length95 / 2,
    ", ",
    proba + length95 / 2,
    "]",
)

# %%
# We can analyze the simulation budget.

# %%
print(
    "Numerical budget: ",
    standardSpaceISResult.getBlockSize() * standardSpaceISResult.getOuterSampling(),
)

# %%
# We can also retrieve the optimal auxiliary distribution in the standard space.

# %%
print(
    "Auxiliary distribution in Standard space: ",
    standardSpaceISResult.getAuxiliaryDistribution(),
)


# %%
# Draw initial samples and final samples
# --------------------------------------
#

# %%
# First we get the auxiliary samples in the standard space and we project them in physical space.

# %%
auxiliaryInputSamples = standardSpaceISResult.getAuxiliaryInputSample()
auxiliaryInputSamplesPhysicalSpace = (
    distribution.getInverseIsoProbabilisticTransformation()(auxiliaryInputSamples)
)


# %%
graph = ot.Graph("Cloud of samples and failure domain", "R", "F", True, "upper right")
# Generation of samples with initial distribution
initialSamples = ot.Cloud(
    distribution.getSample(1000), "blue", "plus", "Initial samples"
)
auxiliarySamples = ot.Cloud(
    auxiliaryInputSamplesPhysicalSpace, "orange", "fsquare", "Auxiliary samples"
)
# Plot failure domain
nx, ny = 50, 50
xx = ot.Box([nx], ot.Interval([1.80e6], [4e6])).generate()
yy = ot.Box([ny], ot.Interval([600.0], [950.0])).generate()
inputData = ot.Box([nx, ny], ot.Interval([1.80e6, 600.0], [4e6, 950.0])).generate()
outputData = g(inputData)
mycontour = ot.Contour(xx, yy, outputData)
mycontour.setLevels([0.0])
mycontour.setLabels(["0.0"])
mycontour.setLegend("Failure domain")
graph.add(initialSamples)
graph.add(auxiliarySamples)
graph.add(mycontour)
view = otv.View(graph)

# %%
# In the previous graph, the blue crosses stand for samples drawn with the initial distribution and the orange squares stand for the samples drawn at the final iteration.

# %%
# Estimation of the probability with the Physical Space Cross Entropy
# -------------------------------------------------------------------

# %%
# For a more advanced usage, it is possible to work in the physical space to specify the auxiliary distribution.
# In this second example, we take the auxiliary distribution in the same family as the initial distribution and we want to optimize all the parameters.

# %%
# The parameters to be optimized are the parameters of the native distribution.
# It is necessary to define among all the distribution parameters, which ones will be optimized through the indices of the parameters.
# In this case, all the parameters will be optimized.

# %%
# Be careful that the native parameters of the auxiliary distribution will be considered.
# Here for the :class:`~openturns.LogNormalMuSigma` distribution, this corresponds
# to `muLog`, `sigmaLog` and `gamma`.

# %%
# The user can use `getParameterDescription()` method to access to the parameters of the auxiliary distribution.

# %%
ot.RandomGenerator.SetSeed(0)
marginR = ot.LogNormalMuSigma().getDistribution()
marginF = ot.Normal()
auxiliaryMarginals = [marginR, marginF]
auxiliaryDistribution = ot.JointDistribution(auxiliaryMarginals)
# Definition of parameters to be optimized
activeParameters = ot.Indices(5)
activeParameters.fill()
# WARNING : native parameters of distribution have to be considered
bounds = ot.Interval([14, 0.01, 0.0, 500, 20], [16, 0.2, 0.1, 1000, 70])
initialParameters = distribution.getParameter()
desc = auxiliaryDistribution.getParameterDescription()
p = auxiliaryDistribution.getParameter()
print(
    "Parameters of the auxiliary distribution:",
    ", ".join([f"{param}: {value:.3f}" for param, value in zip(desc, p)]),
)

physicalSpaceIS1 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)

# %%
# Custom optimization algorithm can be also specified for the auxiliary distribution parameters optimization, here for example we choose :class:`~openturns.TNC`.

# %%
physicalSpaceIS1.setOptimizationAlgorithm(ot.TNC())

# %%
# The number of samples per step can also be specified.

# %%
physicalSpaceIS1.setMaximumOuterSampling(1000)

# %%
# Finally, we run the algorithm and get the results.

# %%
physicalSpaceIS1.run()
physicalSpaceISResult1 = physicalSpaceIS1.getResult()
print("Probability of failure:", physicalSpaceISResult1.getProbabilityEstimate())
print("Coefficient of variation:", physicalSpaceISResult1.getCoefficientOfVariation())

# %%
# We can also decide to optimize only the means of the marginals and keep the other parameters identical to the initial distribution.

# %%
ot.RandomGenerator.SetSeed(0)
marginR = ot.LogNormalMuSigma(3e6, 3e5, 0.0).getDistribution()
marginF = ot.Normal(750.0, 50.0)
auxiliaryMarginals = [marginR, marginF]
auxiliaryDistribution = ot.JointDistribution(auxiliaryMarginals)
print("Parameters of initial distribution", auxiliaryDistribution.getParameter())

# Definition of parameters to be optimized
activeParameters = ot.Indices([0, 3])
# WARNING : native parameters of distribution have to be considered
bounds = ot.Interval([14, 500], [16, 1000])
initialParameters = [15, 750]
physicalSpaceIS2 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)
physicalSpaceIS2.run()
physicalSpaceISResult2 = physicalSpaceIS2.getResult()
print("Probability of failure:", physicalSpaceISResult2.getProbabilityEstimate())
print("Coefficient of variation:", physicalSpaceISResult2.getCoefficientOfVariation())

# %%
# Let us analyze the auxiliary output samples for the two previous simulations.
# We can plot initial (in blue) and auxiliary samples in physical space (orange
# for the first simulation and black for the second simulation).

# %%
graph = ot.Graph("Cloud of samples and failure domain", "R", "F", True, "upper right")
auxiliarySamples1 = ot.Cloud(
    physicalSpaceISResult1.getAuxiliaryInputSample(),
    "orange",
    "fsquare",
    "Auxiliary samples, first case",
)
auxiliarySamples2 = ot.Cloud(
    physicalSpaceISResult2.getAuxiliaryInputSample(),
    "black",
    "bullet",
    "Auxiliary samples, second case",
)
graph.add(initialSamples)
graph.add(auxiliarySamples1)
graph.add(auxiliarySamples2)
graph.add(mycontour)
view = otv.View(graph)

# %%
# By analyzing the failure samples, one may want to include correlation parameters in the auxiliary distribution.
# In this last example, we add a Normal copula. The correlation parameter will be optimized with associated interval between 0 and 1.

# %%
ot.RandomGenerator.SetSeed(0)
marginR = ot.LogNormalMuSigma(3e6, 3e5, 0.0).getDistribution()
marginF = ot.Normal(750.0, 50.0)
auxiliaryMarginals = [marginR, marginF]
copula = ot.NormalCopula()
auxiliaryDistribution = ot.JointDistribution(auxiliaryMarginals, copula)
desc = auxiliaryDistribution.getParameterDescription()
p = auxiliaryDistribution.getParameter()
print(
    "Initial parameters of the auxiliary distribution:",
    ", ".join([f"{param}: {value:.3f}" for param, value in zip(desc, p)]),
)

# Definition of parameters to be optimized
activeParameters = ot.Indices(6)
activeParameters.fill()

bounds = ot.Interval(
    [14, 0.01, 0.0, 500.0, 20.0, 0.0], [16, 0.2, 0.1, 1000.0, 70.0, 1.0]
)
initialParameters = auxiliaryDistribution.getParameter()

physicalSpaceIS3 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)
physicalSpaceIS3.run()
physicalSpaceISResult3 = physicalSpaceIS3.getResult()
desc = physicalSpaceISResult3.getAuxiliaryDistribution().getParameterDescription()
p = physicalSpaceISResult3.getAuxiliaryDistribution().getParameter()
print(
    "Optimized parameters of the auxiliary distribution:",
    ", ".join([f"{param}: {value:.3f}" for param, value in zip(desc, p)]),
)
print("Probability of failure: ", physicalSpaceISResult3.getProbabilityEstimate())
print("Coefficient of variation: ", physicalSpaceISResult3.getCoefficientOfVariation())

# %%
# Finally, we plot the new auxiliary samples in black.

# %%
graph = ot.Graph("Cloud of samples and failure domain", "R", "F", True, "upper right")
auxiliarySamples1 = ot.Cloud(
    physicalSpaceISResult1.getAuxiliaryInputSample(),
    "orange",
    "fsquare",
    "Auxiliary samples, first case",
)
auxiliarySamples3 = ot.Cloud(
    physicalSpaceISResult3.getAuxiliaryInputSample(),
    "black",
    "bullet",
    "Auxiliary samples, second case",
)
graph.add(initialSamples)
graph.add(auxiliarySamples1)
graph.add(auxiliarySamples3)
graph.add(mycontour)

# sphinx_gallery_thumbnail_number = 4
view = otv.View(graph)

# %%
# The `quantileLevel` parameter can be also changed using the :class:`~openturns.ResourceMap` key : `CrossEntropyImportanceSampling-DefaultQuantileLevel`.
# Be careful that this key changes the value number of both :class:`~openturns.StandardSpaceCrossEntropyImportanceSampling`
# and :class:`~openturns.PhysicalSpaceCrossEntropyImportanceSampling`.

# %%
ot.ResourceMap.SetAsScalar("CrossEntropyImportanceSampling-DefaultQuantileLevel", 0.4)
physicalSpaceIS4 = ot.PhysicalSpaceCrossEntropyImportanceSampling(
    event, auxiliaryDistribution, activeParameters, initialParameters, bounds
)
print("Modified quantile level:", physicalSpaceIS4.getQuantileLevel())


# %%
# The optimized auxiliary distribution with a dependency between the two marginals allows one to better fit the failure domain, resulting in a lower coefficient of variation.

# %%
otv.View.ShowAll()
