#! /usr/bin/env python

from __future__ import print_function
from openturns import *
from math import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:
    coll1 = DistributionCollection(0)
    coll1.add(Normal(1.0, 2.5))
    coll1.add(Gamma(1.5, 3.0, 0.0))
    pointLow = NumericalPoint(0)
    pointLow.add(coll1[0].computeQuantile(0.25)[0])
    pointLow.add(coll1[1].computeQuantile(0.25)[0])
    pointHigh = NumericalPoint(0)
    pointHigh.add(coll1[0].computeQuantile(0.75)[0])
    pointHigh.add(coll1[1].computeQuantile(0.75)[0])
    coll2 = DistributionCollection(0)
    coll2.add(Gamma(2.5, 2.0, 0.0))
    coll2.add(Normal(3.0, 1.5))
    # First, check the old constructor
    transformation = MarginalTransformationEvaluation(coll1)
    print("transformation=", repr(transformation))
    print("transformation(", pointLow, ")=", repr(transformation(pointLow)))
    print("transformation(", pointHigh, ")=", repr(transformation(pointHigh)))
    # Validation using finite difference
    eps = 1e-5
    factor = 1.0 / (2.0 * eps)
    gradientLow = Matrix(5, 2)
    gradientHigh = Matrix(5, 2)

    # dT/dp0
    coll = DistributionCollection(2)
    coll[0] = Normal(1.0 + eps, 2.5)
    coll[1] = coll1[1]
    left = MarginalTransformationEvaluation(coll)
    coll[0] = Normal(1.0 - eps, 2.5)
    right = MarginalTransformationEvaluation(coll)
    dTdp = (left(pointLow) - right(pointLow)) * factor
    gradientLow[0, 0] = dTdp[0]
    gradientLow[0, 1] = dTdp[1]
    dTdp = (left(pointHigh) - right(pointHigh)) * factor
    gradientHigh[0, 0] = dTdp[0]
    gradientHigh[0, 1] = dTdp[1]
    # dT/dp1
    coll = DistributionCollection(2)
    coll[0] = Normal(1.0, 2.5 + eps)
    coll[1] = coll1[1]
    left = MarginalTransformationEvaluation(coll)
    coll[0] = Normal(1.0, 2.5 - eps)
    right = MarginalTransformationEvaluation(coll)
    dTdp = (left(pointLow) - right(pointLow)) * factor
    gradientLow[1, 0] = dTdp[0]
    gradientLow[1, 1] = dTdp[1]
    dTdp = (left(pointHigh) - right(pointHigh)) * factor
    gradientHigh[1, 0] = dTdp[0]
    gradientHigh[1, 1] = dTdp[1]
    # dT/dp2
    coll = DistributionCollection(2)
    coll[0] = coll1[0]
    coll[1] = Gamma(1.5 + eps, 3.0, 0.0)
    left = MarginalTransformationEvaluation(coll)
    coll[1] = Gamma(1.5 - eps, 3.0, 0.0)
    right = MarginalTransformationEvaluation(coll)
    dTdp = (left(pointLow) - right(pointLow)) * factor
    gradientLow[2, 0] = dTdp[0]
    gradientLow[2, 1] = dTdp[1]
    dTdp = (left(pointHigh) - right(pointHigh)) * factor
    gradientHigh[2, 0] = dTdp[0]
    gradientHigh[2, 1] = dTdp[1]
    # dT/dp3
    coll = DistributionCollection(2)
    coll[0] = coll1[0]
    coll[1] = Gamma(1.5, 3.0 + eps, 0.0)
    left = MarginalTransformationEvaluation(coll)
    coll[1] = Gamma(1.5, 3.0 - eps, 0.0)
    right = MarginalTransformationEvaluation(coll)
    dTdp = (left(pointLow) - right(pointLow)) * factor
    gradientLow[3, 0] = dTdp[0]
    gradientLow[3, 1] = dTdp[1]
    dTdp = (left(pointHigh) - right(pointHigh)) * factor
    gradientHigh[3, 0] = dTdp[0]
    gradientHigh[3, 1] = dTdp[1]
    # dT/dp4
    coll = DistributionCollection(2)
    coll[0] = coll1[0]
    coll[1] = Gamma(1.5, 3.0, 0.0 + eps)
    left = MarginalTransformationEvaluation(coll)
    coll[1] = Gamma(1.5, 3.0, 0.0 - eps)
    right = MarginalTransformationEvaluation(coll)
    dTdp = (left(pointLow) - right(pointLow)) * factor
    gradientLow[4, 0] = dTdp[0]
    gradientLow[4, 1] = dTdp[1]
    dTdp = (left(pointHigh) - right(pointHigh)) * factor
    gradientHigh[4, 0] = dTdp[0]
    gradientHigh[4, 1] = dTdp[1]

    print("transformation    parameters gradient=", repr(
        transformation.parameterGradient(pointLow)))
    print("finite difference parameters gradient=", repr(gradientLow))
    print("transformation    parameters gradient=", repr(
        transformation.parameterGradient(pointHigh)))
    print("finite difference parameters gradient=", repr(gradientHigh))
    print("input dimension=", transformation.getInputDimension())
    print("output dimension=", transformation.getOutputDimension())

    # Second, check the constructor for old inverse transformation
    transformation = MarginalTransformationEvaluation(
        coll1, MarginalTransformationEvaluation.TO)
    print("transformation=", repr(transformation))
    uLow = NumericalPoint(coll1.getSize(), 0.25)
    uHigh = NumericalPoint(coll1.getSize(), 0.75)
    print("transformation(", uLow, ")=", repr(transformation(uLow)))
    print("transformation(", uHigh, ")=", repr(transformation(uHigh)))
    # Validation using finite difference
    # dT/dp0
    coll = DistributionCollection(2)
    coll[0] = Normal(1.0 + eps, 2.5)
    coll[1] = coll1[1]
    left = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    coll[0] = Normal(1.0 - eps, 2.5)
    right = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    dTdp = (left(uLow) - right(uLow)) * factor
    gradientLow[0, 0] = dTdp[0]
    gradientLow[0, 1] = dTdp[1]
    dTdp = (left(uHigh) - right(uHigh)) * factor
    gradientHigh[0, 0] = dTdp[0]
    gradientHigh[0, 1] = dTdp[1]
    # dT/dp1
    coll = DistributionCollection(2)
    coll[0] = Normal(1.0, 2.5 + eps)
    coll[1] = coll1[1]
    left = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    coll[0] = Normal(1.0, 2.5 - eps)
    right = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    dTdp = (left(uLow) - right(uLow)) * factor
    gradientLow[1, 0] = dTdp[0]
    gradientLow[1, 1] = dTdp[1]
    dTdp = (left(uHigh) - right(uHigh)) * factor
    gradientHigh[1, 0] = dTdp[0]
    gradientHigh[1, 1] = dTdp[1]
    # dT/dp2
    coll = DistributionCollection(2)
    coll[0] = coll1[0]
    coll[1] = Gamma(1.5 + eps, 3.0, 0.0)
    left = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    coll[1] = Gamma(1.5 - eps, 3.0, 0.0)
    right = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    dTdp = (left(uLow) - right(uLow)) * factor
    gradientLow[2, 0] = dTdp[0]
    gradientLow[2, 1] = dTdp[1]
    dTdp = (left(uHigh) - right(uHigh)) * factor
    gradientHigh[2, 0] = dTdp[0]
    gradientHigh[2, 1] = dTdp[1]
    # dT/dp3
    coll = DistributionCollection(2)
    coll[0] = coll1[0]
    coll[1] = Gamma(1.5, 3.0 + eps, 0.0)
    left = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    coll[1] = Gamma(1.5, 3.0 - eps, 0.0)
    right = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    dTdp = (left(uLow) - right(uLow)) * factor
    gradientLow[3, 0] = dTdp[0]
    gradientLow[3, 1] = dTdp[1]
    dTdp = (left(uHigh) - right(uHigh)) * factor
    gradientHigh[3, 0] = dTdp[0]
    gradientHigh[3, 1] = dTdp[1]
    # dT/dp4
    coll = DistributionCollection(2)
    coll[0] = coll1[0]
    coll[1] = Gamma(1.5, 3.0, 0.0 + eps)
    left = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    coll[1] = Gamma(1.5, 3.0, 0.0 - eps)
    right = MarginalTransformationEvaluation(
        coll, MarginalTransformationEvaluation.TO)
    dTdp = (left(uLow) - right(uLow)) * factor
    gradientLow[4, 0] = dTdp[0]
    gradientLow[4, 1] = dTdp[1]
    dTdp = (left(uHigh) - right(uHigh)) * factor
    gradientHigh[4, 0] = dTdp[0]
    gradientHigh[4, 1] = dTdp[1]

    print("transformation    parameters gradient=", repr(
        transformation.parameterGradient(uLow)))
    print("finite difference parameters gradient=", repr(gradientLow))
    print("transformation    parameters gradient=", repr(
        transformation.parameterGradient(uHigh)))
    print("finite difference parameters gradient=", repr(gradientHigh))
    print("input dimension=", transformation.getInputDimension())
    print("output dimension=", transformation.getOutputDimension())

    # Third, check the constructor for the new transformation
    transformation = MarginalTransformationEvaluation(coll1, coll2)
    print("transformation=", repr(transformation))
    print("transformation(", pointLow, ")=", repr(transformation(pointLow)))
    print("transformation(", pointHigh, ")=", repr(transformation(pointHigh)))
    print("input dimension=", transformation.getInputDimension())
    print("output dimension=", transformation.getOutputDimension())
except:
    import sys
    print("t_MarginalTransformationEvaluation_std.py",
          sys.exc_info()[0], sys.exc_info()[1])
