Summary of Time Integrators Available In PETSc#
| TS Name | Reference | Class | Type | Order | 
|---|---|---|---|---|
| euler | forward Euler | one-step | explicit | \(1\) | 
| ssp | multistage SSP [Ket08] | Runge-Kutta | explicit | \(\le 4\) | 
| rk* | multiscale | Runge-Kutta | explicit | \(\ge 1\) | 
| beuler | backward Euler | one-step | implicit | \(1\) | 
| cn | Crank-Nicolson | one-step | implicit | \(2\) | 
| theta* | theta-method | one-step | implicit | \(\le 2\) | 
| bdf | Backward Differentiation Formulas | one-step | implicit | \(\le 6\) | 
| alpha | alpha-method [JWH00] | one-step | implicit | \(2\) | 
| gl | general linear [BJW07] | multistep-multistage | implicit | \(\le 3\) | 
| eimex | extrapolated IMEX [CS10] | one-step | IMEX | \(\ge 1\), adaptive | 
| dirk | DIRK | diagonally implicit Runge-Kutta | implicit | \(\ge 1\) | 
| arkimex | IMEX Runge-Kutta | IMEX | \(1-5\) | |
| rosw | Rosenbrock-W | linearly implicit | \(1-4\) | |
| glee | GL with global error | explicit and implicit | \(1-3\) | |
| mprk | Multirate Partitioned Runge-Kutta | multirate | explicit | \(2-3\) | 
| basicsymplectic | Basic symplectic integrator for separable Hamiltonian | semi-implicit Euler and Velocity Verlet | explicit | \(1-2\) | 
| irk | fully implicit Runge-Kutta | Gauss-Legrendre | implicit | \(2s\) | 
J.C. Butcher, Z. Jackiewicz, and W.M. Wright. Error propagation of general linear methods for ordinary differential equations. Journal of Complexity, 23(4-6):560–580, 2007. doi:10.1016/j.jco.2007.01.009.
E.M. Constantinescu and A. Sandu. Extrapolated implicit-explicit time stepping. SIAM Journal on Scientific Computing, 31(6):4452–4477, 2010. doi:10.1137/080732833.
K.E. Jansen, C.H. Whiting, and G.M. Hulbert. A generalized-alpha method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering, 190(3):305–319, 2000.
D.I. Ketcheson. Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM Journal on Scientific Computing, 30(4):2113–2136, 2008. doi:10.1137/07070485X.