Actual source code: mumps.c

petsc-3.4.2 2013-07-02
  2: /*
  3:     Provides an interface to the MUMPS sparse solver
  4: */

  6: #include <../src/mat/impls/aij/mpi/mpiaij.h> /*I  "petscmat.h"  I*/
  7: #include <../src/mat/impls/sbaij/mpi/mpisbaij.h>

  9: EXTERN_C_BEGIN
 10: #if defined(PETSC_USE_COMPLEX)
 11: #if defined(PETSC_USE_REAL_SINGLE)
 12: #include <cmumps_c.h>
 13: #else
 14: #include <zmumps_c.h>
 15: #endif
 16: #else
 17: #if defined(PETSC_USE_REAL_SINGLE)
 18: #include <smumps_c.h>
 19: #else
 20: #include <dmumps_c.h>
 21: #endif
 22: #endif
 23: EXTERN_C_END
 24: #define JOB_INIT -1
 25: #define JOB_FACTSYMBOLIC 1
 26: #define JOB_FACTNUMERIC 2
 27: #define JOB_SOLVE 3
 28: #define JOB_END -2

 30: /* calls to MUMPS */
 31: #if defined(PETSC_USE_COMPLEX)
 32: #if defined(PETSC_USE_REAL_SINGLE)
 33: #define PetscMUMPS_c cmumps_c
 34: #else
 35: #define PetscMUMPS_c zmumps_c
 36: #endif
 37: #else
 38: #if defined(PETSC_USE_REAL_SINGLE)
 39: #define PetscMUMPS_c smumps_c
 40: #else
 41: #define PetscMUMPS_c dmumps_c
 42: #endif
 43: #endif


 46: /* macros s.t. indices match MUMPS documentation */
 47: #define ICNTL(I) icntl[(I)-1]
 48: #define CNTL(I) cntl[(I)-1]
 49: #define INFOG(I) infog[(I)-1]
 50: #define INFO(I) info[(I)-1]
 51: #define RINFOG(I) rinfog[(I)-1]
 52: #define RINFO(I) rinfo[(I)-1]

 54: typedef struct {
 55: #if defined(PETSC_USE_COMPLEX)
 56: #if defined(PETSC_USE_REAL_SINGLE)
 57:   CMUMPS_STRUC_C id;
 58: #else
 59:   ZMUMPS_STRUC_C id;
 60: #endif
 61: #else
 62: #if defined(PETSC_USE_REAL_SINGLE)
 63:   SMUMPS_STRUC_C id;
 64: #else
 65:   DMUMPS_STRUC_C id;
 66: #endif
 67: #endif

 69:   MatStructure matstruc;
 70:   PetscMPIInt  myid,size;
 71:   PetscInt     *irn,*jcn,nz,sym;
 72:   PetscScalar  *val;
 73:   MPI_Comm     comm_mumps;
 74:   VecScatter   scat_rhs, scat_sol;
 75:   PetscBool    isAIJ,CleanUpMUMPS;
 76:   Vec          b_seq,x_seq;
 77:   PetscInt     ICNTL9_pre;   /* check if ICNTL(9) is changed from previous MatSolve */

 79:   PetscErrorCode (*Destroy)(Mat);
 80:   PetscErrorCode (*ConvertToTriples)(Mat, int, MatReuse, int*, int**, int**, PetscScalar**);
 81: } Mat_MUMPS;

 83: extern PetscErrorCode MatDuplicate_MUMPS(Mat,MatDuplicateOption,Mat*);


 86: /* MatConvertToTriples_A_B */
 87: /*convert Petsc matrix to triples: row[nz], col[nz], val[nz] */
 88: /*
 89:   input:
 90:     A       - matrix in aij,baij or sbaij (bs=1) format
 91:     shift   - 0: C style output triple; 1: Fortran style output triple.
 92:     reuse   - MAT_INITIAL_MATRIX: spaces are allocated and values are set for the triple
 93:               MAT_REUSE_MATRIX:   only the values in v array are updated
 94:   output:
 95:     nnz     - dim of r, c, and v (number of local nonzero entries of A)
 96:     r, c, v - row and col index, matrix values (matrix triples)
 97:  */

101: PetscErrorCode MatConvertToTriples_seqaij_seqaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
102: {
103:   const PetscInt *ai,*aj,*ajj,M=A->rmap->n;
104:   PetscInt       nz,rnz,i,j;
106:   PetscInt       *row,*col;
107:   Mat_SeqAIJ     *aa=(Mat_SeqAIJ*)A->data;

110:   *v=aa->a;
111:   if (reuse == MAT_INITIAL_MATRIX) {
112:     nz   = aa->nz;
113:     ai   = aa->i;
114:     aj   = aa->j;
115:     *nnz = nz;
116:     PetscMalloc(2*nz*sizeof(PetscInt), &row);
117:     col  = row + nz;

119:     nz = 0;
120:     for (i=0; i<M; i++) {
121:       rnz = ai[i+1] - ai[i];
122:       ajj = aj + ai[i];
123:       for (j=0; j<rnz; j++) {
124:         row[nz] = i+shift; col[nz++] = ajj[j] + shift;
125:       }
126:     }
127:     *r = row; *c = col;
128:   }
129:   return(0);
130: }

134: PetscErrorCode MatConvertToTriples_seqbaij_seqaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
135: {
136:   Mat_SeqBAIJ    *aa=(Mat_SeqBAIJ*)A->data;
137:   const PetscInt *ai,*aj,*ajj,bs=A->rmap->bs,bs2=aa->bs2,M=A->rmap->N/bs;
138:   PetscInt       nz,idx=0,rnz,i,j,k,m;
140:   PetscInt       *row,*col;

143:   *v = aa->a;
144:   if (reuse == MAT_INITIAL_MATRIX) {
145:     ai   = aa->i; aj = aa->j;
146:     nz   = bs2*aa->nz;
147:     *nnz = nz;
148:     PetscMalloc(2*nz*sizeof(PetscInt), &row);
149:     col  = row + nz;

151:     for (i=0; i<M; i++) {
152:       ajj = aj + ai[i];
153:       rnz = ai[i+1] - ai[i];
154:       for (k=0; k<rnz; k++) {
155:         for (j=0; j<bs; j++) {
156:           for (m=0; m<bs; m++) {
157:             row[idx]   = i*bs + m + shift;
158:             col[idx++] = bs*(ajj[k]) + j + shift;
159:           }
160:         }
161:       }
162:     }
163:     *r = row; *c = col;
164:   }
165:   return(0);
166: }

170: PetscErrorCode MatConvertToTriples_seqsbaij_seqsbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
171: {
172:   const PetscInt *ai, *aj,*ajj,M=A->rmap->n;
173:   PetscInt       nz,rnz,i,j;
175:   PetscInt       *row,*col;
176:   Mat_SeqSBAIJ   *aa=(Mat_SeqSBAIJ*)A->data;

179:   *v = aa->a;
180:   if (reuse == MAT_INITIAL_MATRIX) {
181:     nz   = aa->nz;
182:     ai   = aa->i;
183:     aj   = aa->j;
184:     *v   = aa->a;
185:     *nnz = nz;
186:     PetscMalloc(2*nz*sizeof(PetscInt), &row);
187:     col  = row + nz;

189:     nz = 0;
190:     for (i=0; i<M; i++) {
191:       rnz = ai[i+1] - ai[i];
192:       ajj = aj + ai[i];
193:       for (j=0; j<rnz; j++) {
194:         row[nz] = i+shift; col[nz++] = ajj[j] + shift;
195:       }
196:     }
197:     *r = row; *c = col;
198:   }
199:   return(0);
200: }

204: PetscErrorCode MatConvertToTriples_seqaij_seqsbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
205: {
206:   const PetscInt    *ai,*aj,*ajj,*adiag,M=A->rmap->n;
207:   PetscInt          nz,rnz,i,j;
208:   const PetscScalar *av,*v1;
209:   PetscScalar       *val;
210:   PetscErrorCode    ierr;
211:   PetscInt          *row,*col;
212:   Mat_SeqSBAIJ      *aa=(Mat_SeqSBAIJ*)A->data;

215:   ai   =aa->i; aj=aa->j;av=aa->a;
216:   adiag=aa->diag;
217:   if (reuse == MAT_INITIAL_MATRIX) {
218:     nz   = M + (aa->nz-M)/2;
219:     *nnz = nz;
220:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
221:     col  = row + nz;
222:     val  = (PetscScalar*)(col + nz);

224:     nz = 0;
225:     for (i=0; i<M; i++) {
226:       rnz = ai[i+1] - adiag[i];
227:       ajj = aj + adiag[i];
228:       v1  = av + adiag[i];
229:       for (j=0; j<rnz; j++) {
230:         row[nz] = i+shift; col[nz] = ajj[j] + shift; val[nz++] = v1[j];
231:       }
232:     }
233:     *r = row; *c = col; *v = val;
234:   } else {
235:     nz = 0; val = *v;
236:     for (i=0; i <M; i++) {
237:       rnz = ai[i+1] - adiag[i];
238:       ajj = aj + adiag[i];
239:       v1  = av + adiag[i];
240:       for (j=0; j<rnz; j++) {
241:         val[nz++] = v1[j];
242:       }
243:     }
244:   }
245:   return(0);
246: }

250: PetscErrorCode MatConvertToTriples_mpisbaij_mpisbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
251: {
252:   const PetscInt    *ai, *aj, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
253:   PetscErrorCode    ierr;
254:   PetscInt          rstart,nz,i,j,jj,irow,countA,countB;
255:   PetscInt          *row,*col;
256:   const PetscScalar *av, *bv,*v1,*v2;
257:   PetscScalar       *val;
258:   Mat_MPISBAIJ      *mat = (Mat_MPISBAIJ*)A->data;
259:   Mat_SeqSBAIJ      *aa  = (Mat_SeqSBAIJ*)(mat->A)->data;
260:   Mat_SeqBAIJ       *bb  = (Mat_SeqBAIJ*)(mat->B)->data;

263:   ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
264:   av=aa->a; bv=bb->a;

266:   garray = mat->garray;

268:   if (reuse == MAT_INITIAL_MATRIX) {
269:     nz   = aa->nz + bb->nz;
270:     *nnz = nz;
271:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
272:     col  = row + nz;
273:     val  = (PetscScalar*)(col + nz);

275:     *r = row; *c = col; *v = val;
276:   } else {
277:     row = *r; col = *c; val = *v;
278:   }

280:   jj = 0; irow = rstart;
281:   for (i=0; i<m; i++) {
282:     ajj    = aj + ai[i];                 /* ptr to the beginning of this row */
283:     countA = ai[i+1] - ai[i];
284:     countB = bi[i+1] - bi[i];
285:     bjj    = bj + bi[i];
286:     v1     = av + ai[i];
287:     v2     = bv + bi[i];

289:     /* A-part */
290:     for (j=0; j<countA; j++) {
291:       if (reuse == MAT_INITIAL_MATRIX) {
292:         row[jj] = irow + shift; col[jj] = rstart + ajj[j] + shift;
293:       }
294:       val[jj++] = v1[j];
295:     }

297:     /* B-part */
298:     for (j=0; j < countB; j++) {
299:       if (reuse == MAT_INITIAL_MATRIX) {
300:         row[jj] = irow + shift; col[jj] = garray[bjj[j]] + shift;
301:       }
302:       val[jj++] = v2[j];
303:     }
304:     irow++;
305:   }
306:   return(0);
307: }

311: PetscErrorCode MatConvertToTriples_mpiaij_mpiaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
312: {
313:   const PetscInt    *ai, *aj, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
314:   PetscErrorCode    ierr;
315:   PetscInt          rstart,nz,i,j,jj,irow,countA,countB;
316:   PetscInt          *row,*col;
317:   const PetscScalar *av, *bv,*v1,*v2;
318:   PetscScalar       *val;
319:   Mat_MPIAIJ        *mat = (Mat_MPIAIJ*)A->data;
320:   Mat_SeqAIJ        *aa  = (Mat_SeqAIJ*)(mat->A)->data;
321:   Mat_SeqAIJ        *bb  = (Mat_SeqAIJ*)(mat->B)->data;

324:   ai=aa->i; aj=aa->j; bi=bb->i; bj=bb->j; rstart= A->rmap->rstart;
325:   av=aa->a; bv=bb->a;

327:   garray = mat->garray;

329:   if (reuse == MAT_INITIAL_MATRIX) {
330:     nz   = aa->nz + bb->nz;
331:     *nnz = nz;
332:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
333:     col  = row + nz;
334:     val  = (PetscScalar*)(col + nz);

336:     *r = row; *c = col; *v = val;
337:   } else {
338:     row = *r; col = *c; val = *v;
339:   }

341:   jj = 0; irow = rstart;
342:   for (i=0; i<m; i++) {
343:     ajj    = aj + ai[i];                 /* ptr to the beginning of this row */
344:     countA = ai[i+1] - ai[i];
345:     countB = bi[i+1] - bi[i];
346:     bjj    = bj + bi[i];
347:     v1     = av + ai[i];
348:     v2     = bv + bi[i];

350:     /* A-part */
351:     for (j=0; j<countA; j++) {
352:       if (reuse == MAT_INITIAL_MATRIX) {
353:         row[jj] = irow + shift; col[jj] = rstart + ajj[j] + shift;
354:       }
355:       val[jj++] = v1[j];
356:     }

358:     /* B-part */
359:     for (j=0; j < countB; j++) {
360:       if (reuse == MAT_INITIAL_MATRIX) {
361:         row[jj] = irow + shift; col[jj] = garray[bjj[j]] + shift;
362:       }
363:       val[jj++] = v2[j];
364:     }
365:     irow++;
366:   }
367:   return(0);
368: }

372: PetscErrorCode MatConvertToTriples_mpibaij_mpiaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
373: {
374:   Mat_MPIBAIJ       *mat    = (Mat_MPIBAIJ*)A->data;
375:   Mat_SeqBAIJ       *aa     = (Mat_SeqBAIJ*)(mat->A)->data;
376:   Mat_SeqBAIJ       *bb     = (Mat_SeqBAIJ*)(mat->B)->data;
377:   const PetscInt    *ai     = aa->i, *bi = bb->i, *aj = aa->j, *bj = bb->j,*ajj, *bjj;
378:   const PetscInt    *garray = mat->garray,mbs=mat->mbs,rstart=A->rmap->rstart;
379:   const PetscInt    bs      = A->rmap->bs,bs2=mat->bs2;
380:   PetscErrorCode    ierr;
381:   PetscInt          nz,i,j,k,n,jj,irow,countA,countB,idx;
382:   PetscInt          *row,*col;
383:   const PetscScalar *av=aa->a, *bv=bb->a,*v1,*v2;
384:   PetscScalar       *val;

387:   if (reuse == MAT_INITIAL_MATRIX) {
388:     nz   = bs2*(aa->nz + bb->nz);
389:     *nnz = nz;
390:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
391:     col  = row + nz;
392:     val  = (PetscScalar*)(col + nz);

394:     *r = row; *c = col; *v = val;
395:   } else {
396:     row = *r; col = *c; val = *v;
397:   }

399:   jj = 0; irow = rstart;
400:   for (i=0; i<mbs; i++) {
401:     countA = ai[i+1] - ai[i];
402:     countB = bi[i+1] - bi[i];
403:     ajj    = aj + ai[i];
404:     bjj    = bj + bi[i];
405:     v1     = av + bs2*ai[i];
406:     v2     = bv + bs2*bi[i];

408:     idx = 0;
409:     /* A-part */
410:     for (k=0; k<countA; k++) {
411:       for (j=0; j<bs; j++) {
412:         for (n=0; n<bs; n++) {
413:           if (reuse == MAT_INITIAL_MATRIX) {
414:             row[jj] = irow + n + shift;
415:             col[jj] = rstart + bs*ajj[k] + j + shift;
416:           }
417:           val[jj++] = v1[idx++];
418:         }
419:       }
420:     }

422:     idx = 0;
423:     /* B-part */
424:     for (k=0; k<countB; k++) {
425:       for (j=0; j<bs; j++) {
426:         for (n=0; n<bs; n++) {
427:           if (reuse == MAT_INITIAL_MATRIX) {
428:             row[jj] = irow + n + shift;
429:             col[jj] = bs*garray[bjj[k]] + j + shift;
430:           }
431:           val[jj++] = v2[idx++];
432:         }
433:       }
434:     }
435:     irow += bs;
436:   }
437:   return(0);
438: }

442: PetscErrorCode MatConvertToTriples_mpiaij_mpisbaij(Mat A,int shift,MatReuse reuse,int *nnz,int **r, int **c, PetscScalar **v)
443: {
444:   const PetscInt    *ai, *aj,*adiag, *bi, *bj,*garray,m=A->rmap->n,*ajj,*bjj;
445:   PetscErrorCode    ierr;
446:   PetscInt          rstart,nz,nza,nzb,i,j,jj,irow,countA,countB;
447:   PetscInt          *row,*col;
448:   const PetscScalar *av, *bv,*v1,*v2;
449:   PetscScalar       *val;
450:   Mat_MPIAIJ        *mat =  (Mat_MPIAIJ*)A->data;
451:   Mat_SeqAIJ        *aa  =(Mat_SeqAIJ*)(mat->A)->data;
452:   Mat_SeqAIJ        *bb  =(Mat_SeqAIJ*)(mat->B)->data;

455:   ai=aa->i; aj=aa->j; adiag=aa->diag;
456:   bi=bb->i; bj=bb->j; garray = mat->garray;
457:   av=aa->a; bv=bb->a;

459:   rstart = A->rmap->rstart;

461:   if (reuse == MAT_INITIAL_MATRIX) {
462:     nza = 0;    /* num of upper triangular entries in mat->A, including diagonals */
463:     nzb = 0;    /* num of upper triangular entries in mat->B */
464:     for (i=0; i<m; i++) {
465:       nza   += (ai[i+1] - adiag[i]);
466:       countB = bi[i+1] - bi[i];
467:       bjj    = bj + bi[i];
468:       for (j=0; j<countB; j++) {
469:         if (garray[bjj[j]] > rstart) nzb++;
470:       }
471:     }

473:     nz   = nza + nzb; /* total nz of upper triangular part of mat */
474:     *nnz = nz;
475:     PetscMalloc((2*nz*sizeof(PetscInt)+nz*sizeof(PetscScalar)), &row);
476:     col  = row + nz;
477:     val  = (PetscScalar*)(col + nz);

479:     *r = row; *c = col; *v = val;
480:   } else {
481:     row = *r; col = *c; val = *v;
482:   }

484:   jj = 0; irow = rstart;
485:   for (i=0; i<m; i++) {
486:     ajj    = aj + adiag[i];                 /* ptr to the beginning of the diagonal of this row */
487:     v1     = av + adiag[i];
488:     countA = ai[i+1] - adiag[i];
489:     countB = bi[i+1] - bi[i];
490:     bjj    = bj + bi[i];
491:     v2     = bv + bi[i];

493:     /* A-part */
494:     for (j=0; j<countA; j++) {
495:       if (reuse == MAT_INITIAL_MATRIX) {
496:         row[jj] = irow + shift; col[jj] = rstart + ajj[j] + shift;
497:       }
498:       val[jj++] = v1[j];
499:     }

501:     /* B-part */
502:     for (j=0; j < countB; j++) {
503:       if (garray[bjj[j]] > rstart) {
504:         if (reuse == MAT_INITIAL_MATRIX) {
505:           row[jj] = irow + shift; col[jj] = garray[bjj[j]] + shift;
506:         }
507:         val[jj++] = v2[j];
508:       }
509:     }
510:     irow++;
511:   }
512:   return(0);
513: }

517: PetscErrorCode MatDestroy_MUMPS(Mat A)
518: {
519:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->spptr;

523:   if (mumps->CleanUpMUMPS) {
524:     /* Terminate instance, deallocate memories */
525:     PetscFree2(mumps->id.sol_loc,mumps->id.isol_loc);
526:     VecScatterDestroy(&mumps->scat_rhs);
527:     VecDestroy(&mumps->b_seq);
528:     VecScatterDestroy(&mumps->scat_sol);
529:     VecDestroy(&mumps->x_seq);
530:     PetscFree(mumps->id.perm_in);
531:     PetscFree(mumps->irn);

533:     mumps->id.job = JOB_END;
534:     PetscMUMPS_c(&mumps->id);
535:     MPI_Comm_free(&(mumps->comm_mumps));
536:   }
537:   if (mumps->Destroy) {
538:     (mumps->Destroy)(A);
539:   }
540:   PetscFree(A->spptr);

542:   /* clear composed functions */
543:   PetscObjectComposeFunction((PetscObject)A,"MatFactorGetSolverPackage_C",NULL);
544:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsSetIcntl_C",NULL);
545:   PetscObjectComposeFunction((PetscObject)A,"MatMumpsSetCntl_C",NULL);
546:   return(0);
547: }

551: PetscErrorCode MatSolve_MUMPS(Mat A,Vec b,Vec x)
552: {
553:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->spptr;
554:   PetscScalar    *array;
555:   Vec            b_seq;
556:   IS             is_iden,is_petsc;
558:   PetscInt       i;

561:   mumps->id.nrhs = 1;
562:   b_seq          = mumps->b_seq;
563:   if (mumps->size > 1) {
564:     /* MUMPS only supports centralized rhs. Scatter b into a seqential rhs vector */
565:     VecScatterBegin(mumps->scat_rhs,b,b_seq,INSERT_VALUES,SCATTER_FORWARD);
566:     VecScatterEnd(mumps->scat_rhs,b,b_seq,INSERT_VALUES,SCATTER_FORWARD);
567:     if (!mumps->myid) {VecGetArray(b_seq,&array);}
568:   } else {  /* size == 1 */
569:     VecCopy(b,x);
570:     VecGetArray(x,&array);
571:   }
572:   if (!mumps->myid) { /* define rhs on the host */
573:     mumps->id.nrhs = 1;
574: #if defined(PETSC_USE_COMPLEX)
575: #if defined(PETSC_USE_REAL_SINGLE)
576:     mumps->id.rhs = (mumps_complex*)array;
577: #else
578:     mumps->id.rhs = (mumps_double_complex*)array;
579: #endif
580: #else
581:     mumps->id.rhs = array;
582: #endif
583:   }

585:   /* solve phase */
586:   /*-------------*/
587:   mumps->id.job = JOB_SOLVE;
588:   PetscMUMPS_c(&mumps->id);
589:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in solve phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

591:   if (mumps->size > 1) { /* convert mumps distributed solution to petsc mpi x */
592:     if (mumps->scat_sol && mumps->ICNTL9_pre != mumps->id.ICNTL(9)) {
593:       /* when id.ICNTL(9) changes, the contents of lsol_loc may change (not its size, lsol_loc), recreates scat_sol */
594:       VecScatterDestroy(&mumps->scat_sol);
595:     }
596:     if (!mumps->scat_sol) { /* create scatter scat_sol */
597:       ISCreateStride(PETSC_COMM_SELF,mumps->id.lsol_loc,0,1,&is_iden); /* from */
598:       for (i=0; i<mumps->id.lsol_loc; i++) {
599:         mumps->id.isol_loc[i] -= 1; /* change Fortran style to C style */
600:       }
601:       ISCreateGeneral(PETSC_COMM_SELF,mumps->id.lsol_loc,mumps->id.isol_loc,PETSC_COPY_VALUES,&is_petsc);  /* to */
602:       VecScatterCreate(mumps->x_seq,is_iden,x,is_petsc,&mumps->scat_sol);
603:       ISDestroy(&is_iden);
604:       ISDestroy(&is_petsc);

606:       mumps->ICNTL9_pre = mumps->id.ICNTL(9); /* save current value of id.ICNTL(9) */
607:     }

609:     VecScatterBegin(mumps->scat_sol,mumps->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
610:     VecScatterEnd(mumps->scat_sol,mumps->x_seq,x,INSERT_VALUES,SCATTER_FORWARD);
611:   }
612:   return(0);
613: }

617: PetscErrorCode MatSolveTranspose_MUMPS(Mat A,Vec b,Vec x)
618: {
619:   Mat_MUMPS      *mumps=(Mat_MUMPS*)A->spptr;

623:   mumps->id.ICNTL(9) = 0;

625:   MatSolve_MUMPS(A,b,x);

627:   mumps->id.ICNTL(9) = 1;
628:   return(0);
629: }

633: PetscErrorCode MatMatSolve_MUMPS(Mat A,Mat B,Mat X)
634: {
636:   PetscBool      flg;

639:   PetscObjectTypeCompareAny((PetscObject)B,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
640:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix B must be MATDENSE matrix");
641:   PetscObjectTypeCompareAny((PetscObject)X,&flg,MATSEQDENSE,MATMPIDENSE,NULL);
642:   if (!flg) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_ARG_WRONG,"Matrix X must be MATDENSE matrix");
643:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"MatMatSolve_MUMPS() is not implemented yet");
644:   return(0);
645: }

647: #if !defined(PETSC_USE_COMPLEX)
648: /*
649:   input:
650:    F:        numeric factor
651:   output:
652:    nneg:     total number of negative pivots
653:    nzero:    0
654:    npos:     (global dimension of F) - nneg
655: */

659: PetscErrorCode MatGetInertia_SBAIJMUMPS(Mat F,int *nneg,int *nzero,int *npos)
660: {
661:   Mat_MUMPS      *mumps =(Mat_MUMPS*)F->spptr;
663:   PetscMPIInt    size;

666:   MPI_Comm_size(PetscObjectComm((PetscObject)F),&size);
667:   /* MUMPS 4.3.1 calls ScaLAPACK when ICNTL(13)=0 (default), which does not offer the possibility to compute the inertia of a dense matrix. Set ICNTL(13)=1 to skip ScaLAPACK */
668:   if (size > 1 && mumps->id.ICNTL(13) != 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"ICNTL(13)=%d. -mat_mumps_icntl_13 must be set as 1 for correct global matrix inertia\n",mumps->id.INFOG(13));
669:   if (nneg) {
670:     if (!mumps->myid) {
671:       *nneg = mumps->id.INFOG(12);
672:     }
673:     MPI_Bcast(nneg,1,MPI_INT,0,mumps->comm_mumps);
674:   }
675:   if (nzero) *nzero = 0;
676:   if (npos)  *npos  = F->rmap->N - (*nneg);
677:   return(0);
678: }
679: #endif /* !defined(PETSC_USE_COMPLEX) */

683: PetscErrorCode MatFactorNumeric_MUMPS(Mat F,Mat A,const MatFactorInfo *info)
684: {
685:   Mat_MUMPS      *mumps =(Mat_MUMPS*)(F)->spptr;
687:   Mat            F_diag;
688:   PetscBool      isMPIAIJ;

691:   (*mumps->ConvertToTriples)(A, 1, MAT_REUSE_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

693:   /* numerical factorization phase */
694:   /*-------------------------------*/
695:   mumps->id.job = JOB_FACTNUMERIC;
696:   if (!mumps->id.ICNTL(18)) {
697:     if (!mumps->myid) {
698: #if defined(PETSC_USE_COMPLEX)
699: #if defined(PETSC_USE_REAL_SINGLE)
700:       mumps->id.a = (mumps_complex*)mumps->val;
701: #else
702:       mumps->id.a = (mumps_double_complex*)mumps->val;
703: #endif
704: #else
705:       mumps->id.a = mumps->val;
706: #endif
707:     }
708:   } else {
709: #if defined(PETSC_USE_COMPLEX)
710: #if defined(PETSC_USE_REAL_SINGLE)
711:     mumps->id.a_loc = (mumps_complex*)mumps->val;
712: #else
713:     mumps->id.a_loc = (mumps_double_complex*)mumps->val;
714: #endif
715: #else
716:     mumps->id.a_loc = mumps->val;
717: #endif
718:   }
719:   PetscMUMPS_c(&mumps->id);
720:   if (mumps->id.INFOG(1) < 0) {
721:     if (mumps->id.INFO(1) == -13) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: Cannot allocate required memory %d megabytes\n",mumps->id.INFO(2));
722:     else SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in numerical factorization phase: INFO(1)=%d, INFO(2)=%d\n",mumps->id.INFO(1),mumps->id.INFO(2));
723:   }
724:   if (!mumps->myid && mumps->id.ICNTL(16) > 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"  mumps->id.ICNTL(16):=%d\n",mumps->id.INFOG(16));

726:   if (mumps->size > 1) {
727:     PetscObjectTypeCompare((PetscObject)A,MATMPIAIJ,&isMPIAIJ);
728:     if (isMPIAIJ) F_diag = ((Mat_MPIAIJ*)(F)->data)->A;
729:     else F_diag = ((Mat_MPISBAIJ*)(F)->data)->A;
730:     F_diag->assembled = PETSC_TRUE;
731:     if (mumps->scat_sol) {
732:       VecScatterDestroy(&mumps->scat_sol);
733:       PetscFree2(mumps->id.sol_loc,mumps->id.isol_loc);
734:       VecDestroy(&mumps->x_seq);
735:     }
736:   }
737:   (F)->assembled      = PETSC_TRUE;
738:   mumps->matstruc     = SAME_NONZERO_PATTERN;
739:   mumps->CleanUpMUMPS = PETSC_TRUE;

741:   if (mumps->size > 1) {
742:     /* distributed solution */
743:     if (!mumps->scat_sol) {
744:       /* Create x_seq=sol_loc for repeated use */
745:       PetscInt    lsol_loc;
746:       PetscScalar *sol_loc;

748:       lsol_loc = mumps->id.INFO(23); /* length of sol_loc */

750:       PetscMalloc2(lsol_loc,PetscScalar,&sol_loc,lsol_loc,PetscInt,&mumps->id.isol_loc);

752:       mumps->id.lsol_loc = lsol_loc;
753: #if defined(PETSC_USE_COMPLEX)
754: #if defined(PETSC_USE_REAL_SINGLE)
755:       mumps->id.sol_loc = (mumps_complex*)sol_loc;
756: #else
757:       mumps->id.sol_loc = (mumps_double_complex*)sol_loc;
758: #endif
759: #else
760:       mumps->id.sol_loc = sol_loc;
761: #endif
762:       VecCreateSeqWithArray(PETSC_COMM_SELF,1,lsol_loc,sol_loc,&mumps->x_seq);
763:     }
764:   }
765:   return(0);
766: }

768: /* Sets MUMPS options from the options database */
771: PetscErrorCode PetscSetMUMPSFromOptions(Mat F, Mat A)
772: {
773:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
775:   PetscInt       icntl;
776:   PetscBool      flg;

779:   PetscOptionsBegin(PetscObjectComm((PetscObject)A),((PetscObject)A)->prefix,"MUMPS Options","Mat");
780:   PetscOptionsInt("-mat_mumps_icntl_1","ICNTL(1): output stream for error messages","None",mumps->id.ICNTL(1),&icntl,&flg);
781:   if (flg) mumps->id.ICNTL(1) = icntl;
782:   PetscOptionsInt("-mat_mumps_icntl_2","ICNTL(2): output stream for diagnostic printing, statistics, and warning","None",mumps->id.ICNTL(2),&icntl,&flg);
783:   if (flg) mumps->id.ICNTL(2) = icntl;
784:   PetscOptionsInt("-mat_mumps_icntl_3","ICNTL(3): output stream for global information, collected on the host","None",mumps->id.ICNTL(3),&icntl,&flg);
785:   if (flg) mumps->id.ICNTL(3) = icntl;

787:   PetscOptionsInt("-mat_mumps_icntl_4","ICNTL(4): level of printing (0 to 4)","None",mumps->id.ICNTL(4),&icntl,&flg);
788:   if (flg) mumps->id.ICNTL(4) = icntl;
789:   if (mumps->id.ICNTL(4) || PetscLogPrintInfo) mumps->id.ICNTL(3) = 6; /* resume MUMPS default id.ICNTL(3) = 6 */

791:   PetscOptionsInt("-mat_mumps_icntl_6","ICNTL(6): permuting and/or scaling the matrix (0 to 7)","None",mumps->id.ICNTL(6),&icntl,&flg);
792:   if (flg) mumps->id.ICNTL(6) = icntl;

794:   PetscOptionsInt("-mat_mumps_icntl_7","ICNTL(7): matrix ordering (0 to 7). 3=Scotch, 4=PORD, 5=Metis","None",mumps->id.ICNTL(7),&icntl,&flg);
795:   if (flg) {
796:     if (icntl== 1 && mumps->size > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"pivot order be set by the user in PERM_IN -- not supported by the PETSc/MUMPS interface\n");
797:     else mumps->id.ICNTL(7) = icntl;
798:   }

800:   PetscOptionsInt("-mat_mumps_icntl_8","ICNTL(8): scaling strategy (-2 to 8 or 77)","None",mumps->id.ICNTL(8),&mumps->id.ICNTL(8),NULL);
801:   PetscOptionsInt("-mat_mumps_icntl_10","ICNTL(10): max num of refinements","None",mumps->id.ICNTL(10),&mumps->id.ICNTL(10),NULL);
802:   PetscOptionsInt("-mat_mumps_icntl_11","ICNTL(11): statistics related to the linear system solved (via -ksp_view)","None",mumps->id.ICNTL(11),&mumps->id.ICNTL(11),NULL);
803:   PetscOptionsInt("-mat_mumps_icntl_12","ICNTL(12): efficiency control: defines the ordering strategy with scaling constraints (0 to 3)","None",mumps->id.ICNTL(12),&mumps->id.ICNTL(12),NULL);
804:   PetscOptionsInt("-mat_mumps_icntl_13","ICNTL(13): efficiency control: with or without ScaLAPACK","None",mumps->id.ICNTL(13),&mumps->id.ICNTL(13),NULL);
805:   PetscOptionsInt("-mat_mumps_icntl_14","ICNTL(14): percentage of estimated workspace increase","None",mumps->id.ICNTL(14),&mumps->id.ICNTL(14),NULL);
806:   PetscOptionsInt("-mat_mumps_icntl_19","ICNTL(19): Schur complement","None",mumps->id.ICNTL(19),&mumps->id.ICNTL(19),NULL);

808:   PetscOptionsInt("-mat_mumps_icntl_22","ICNTL(22): in-core/out-of-core facility (0 or 1)","None",mumps->id.ICNTL(22),&mumps->id.ICNTL(22),NULL);
809:   PetscOptionsInt("-mat_mumps_icntl_23","ICNTL(23): max size of the working memory (MB) that can allocate per processor","None",mumps->id.ICNTL(23),&mumps->id.ICNTL(23),NULL);
810:   PetscOptionsInt("-mat_mumps_icntl_24","ICNTL(24): detection of null pivot rows (0 or 1)","None",mumps->id.ICNTL(24),&mumps->id.ICNTL(24),NULL);
811:   if (mumps->id.ICNTL(24)) {
812:     mumps->id.ICNTL(13) = 1; /* turn-off ScaLAPACK to help with the correct detection of null pivots */
813:   }

815:   PetscOptionsInt("-mat_mumps_icntl_25","ICNTL(25): computation of a null space basis","None",mumps->id.ICNTL(25),&mumps->id.ICNTL(25),NULL);
816:   PetscOptionsInt("-mat_mumps_icntl_26","ICNTL(26): Schur options for right-hand side or solution vector","None",mumps->id.ICNTL(26),&mumps->id.ICNTL(26),NULL);
817:   PetscOptionsInt("-mat_mumps_icntl_27","ICNTL(27): experimental parameter","None",mumps->id.ICNTL(27),&mumps->id.ICNTL(27),NULL);
818:   PetscOptionsInt("-mat_mumps_icntl_28","ICNTL(28): use 1 for sequential analysis and ictnl(7) ordering, or 2 for parallel analysis and ictnl(29) ordering","None",mumps->id.ICNTL(28),&mumps->id.ICNTL(28),NULL);
819:   PetscOptionsInt("-mat_mumps_icntl_29","ICNTL(29): parallel ordering 1 = ptscotch 2 = parmetis","None",mumps->id.ICNTL(29),&mumps->id.ICNTL(29),NULL);
820:   PetscOptionsInt("-mat_mumps_icntl_30","ICNTL(30): compute user-specified set of entries in inv(A)","None",mumps->id.ICNTL(30),&mumps->id.ICNTL(30),NULL);
821:   PetscOptionsInt("-mat_mumps_icntl_31","ICNTL(31): factors can be discarded in the solve phase","None",mumps->id.ICNTL(31),&mumps->id.ICNTL(31),NULL);
822:   PetscOptionsInt("-mat_mumps_icntl_33","ICNTL(33): compute determinant","None",mumps->id.ICNTL(33),&mumps->id.ICNTL(33),NULL);

824:   PetscOptionsReal("-mat_mumps_cntl_1","CNTL(1): relative pivoting threshold","None",mumps->id.CNTL(1),&mumps->id.CNTL(1),NULL);
825:   PetscOptionsReal("-mat_mumps_cntl_2","CNTL(2): stopping criterion of refinement","None",mumps->id.CNTL(2),&mumps->id.CNTL(2),NULL);
826:   PetscOptionsReal("-mat_mumps_cntl_3","CNTL(3): absolute pivoting threshold","None",mumps->id.CNTL(3),&mumps->id.CNTL(3),NULL);
827:   PetscOptionsReal("-mat_mumps_cntl_4","CNTL(4): value for static pivoting","None",mumps->id.CNTL(4),&mumps->id.CNTL(4),NULL);
828:   PetscOptionsReal("-mat_mumps_cntl_5","CNTL(5): fixation for null pivots","None",mumps->id.CNTL(5),&mumps->id.CNTL(5),NULL);

830:   PetscOptionsString("-mat_mumps_ooc_tmpdir", "out of core directory", "None", mumps->id.ooc_tmpdir, mumps->id.ooc_tmpdir, 256, NULL);
831:   PetscOptionsEnd();
832:   return(0);
833: }

837: PetscErrorCode PetscInitializeMUMPS(Mat A,Mat_MUMPS *mumps)
838: {

842:   MPI_Comm_rank(PetscObjectComm((PetscObject)A), &mumps->myid);
843:   MPI_Comm_size(PetscObjectComm((PetscObject)A),&mumps->size);
844:   MPI_Comm_dup(PetscObjectComm((PetscObject)A),&(mumps->comm_mumps));

846:   mumps->id.comm_fortran = MPI_Comm_c2f(mumps->comm_mumps);

848:   mumps->id.job = JOB_INIT;
849:   mumps->id.par = 1;  /* host participates factorizaton and solve */
850:   mumps->id.sym = mumps->sym;
851:   PetscMUMPS_c(&mumps->id);

853:   mumps->CleanUpMUMPS = PETSC_FALSE;
854:   mumps->scat_rhs     = NULL;
855:   mumps->scat_sol     = NULL;

857:   /* set PETSc-MUMPS default options - override MUMPS default */
858:   mumps->id.ICNTL(3) = 0;
859:   mumps->id.ICNTL(4) = 0;
860:   if (mumps->size == 1) {
861:     mumps->id.ICNTL(18) = 0;   /* centralized assembled matrix input */
862:   } else {
863:     mumps->id.ICNTL(18) = 3;   /* distributed assembled matrix input */
864:     mumps->id.ICNTL(21) = 1;   /* distributed solution */
865:   }
866:   return(0);
867: }

869: /* Note Petsc r(=c) permutation is used when mumps->id.ICNTL(7)==1 with centralized assembled matrix input; otherwise r and c are ignored */
872: PetscErrorCode MatLUFactorSymbolic_AIJMUMPS(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
873: {
874:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
876:   Vec            b;
877:   IS             is_iden;
878:   const PetscInt M = A->rmap->N;

881:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;

883:   /* Set MUMPS options from the options database */
884:   PetscSetMUMPSFromOptions(F,A);

886:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

888:   /* analysis phase */
889:   /*----------------*/
890:   mumps->id.job = JOB_FACTSYMBOLIC;
891:   mumps->id.n   = M;
892:   switch (mumps->id.ICNTL(18)) {
893:   case 0:  /* centralized assembled matrix input */
894:     if (!mumps->myid) {
895:       mumps->id.nz =mumps->nz; mumps->id.irn=mumps->irn; mumps->id.jcn=mumps->jcn;
896:       if (mumps->id.ICNTL(6)>1) {
897: #if defined(PETSC_USE_COMPLEX)
898: #if defined(PETSC_USE_REAL_SINGLE)
899:         mumps->id.a = (mumps_complex*)mumps->val;
900: #else
901:         mumps->id.a = (mumps_double_complex*)mumps->val;
902: #endif
903: #else
904:         mumps->id.a = mumps->val;
905: #endif
906:       }
907:       if (mumps->id.ICNTL(7) == 1) { /* use user-provide matrix ordering - assuming r = c ordering */
908:         /*
909:         PetscBool      flag;
910:         ISEqual(r,c,&flag);
911:         if (!flag) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"row_perm != col_perm");
912:         ISView(r,PETSC_VIEWER_STDOUT_SELF);
913:          */
914:         if (!mumps->myid) {
915:           const PetscInt *idx;
916:           PetscInt       i,*perm_in;

918:           PetscMalloc(M*sizeof(PetscInt),&perm_in);
919:           ISGetIndices(r,&idx);

921:           mumps->id.perm_in = perm_in;
922:           for (i=0; i<M; i++) perm_in[i] = idx[i]+1; /* perm_in[]: start from 1, not 0! */
923:           ISRestoreIndices(r,&idx);
924:         }
925:       }
926:     }
927:     break;
928:   case 3:  /* distributed assembled matrix input (size>1) */
929:     mumps->id.nz_loc = mumps->nz;
930:     mumps->id.irn_loc=mumps->irn; mumps->id.jcn_loc=mumps->jcn;
931:     if (mumps->id.ICNTL(6)>1) {
932: #if defined(PETSC_USE_COMPLEX)
933: #if defined(PETSC_USE_REAL_SINGLE)
934:       mumps->id.a_loc = (mumps_complex*)mumps->val;
935: #else
936:       mumps->id.a_loc = (mumps_double_complex*)mumps->val;
937: #endif
938: #else
939:       mumps->id.a_loc = mumps->val;
940: #endif
941:     }
942:     /* MUMPS only supports centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
943:     if (!mumps->myid) {
944:       VecCreateSeq(PETSC_COMM_SELF,A->cmap->N,&mumps->b_seq);
945:       ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,&is_iden);
946:     } else {
947:       VecCreateSeq(PETSC_COMM_SELF,0,&mumps->b_seq);
948:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_iden);
949:     }
950:     VecCreate(PetscObjectComm((PetscObject)A),&b);
951:     VecSetSizes(b,A->rmap->n,PETSC_DECIDE);
952:     VecSetFromOptions(b);

954:     VecScatterCreate(b,is_iden,mumps->b_seq,is_iden,&mumps->scat_rhs);
955:     ISDestroy(&is_iden);
956:     VecDestroy(&b);
957:     break;
958:   }
959:   PetscMUMPS_c(&mumps->id);
960:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

962:   F->ops->lufactornumeric = MatFactorNumeric_MUMPS;
963:   F->ops->solve           = MatSolve_MUMPS;
964:   F->ops->solvetranspose  = MatSolveTranspose_MUMPS;
965:   F->ops->matsolve        = 0;  /* use MatMatSolve_Basic() until mumps supports distributed rhs */
966:   return(0);
967: }

969: /* Note the Petsc r and c permutations are ignored */
972: PetscErrorCode MatLUFactorSymbolic_BAIJMUMPS(Mat F,Mat A,IS r,IS c,const MatFactorInfo *info)
973: {
974:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
976:   Vec            b;
977:   IS             is_iden;
978:   const PetscInt M = A->rmap->N;

981:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;

983:   /* Set MUMPS options from the options database */
984:   PetscSetMUMPSFromOptions(F,A);

986:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

988:   /* analysis phase */
989:   /*----------------*/
990:   mumps->id.job = JOB_FACTSYMBOLIC;
991:   mumps->id.n   = M;
992:   switch (mumps->id.ICNTL(18)) {
993:   case 0:  /* centralized assembled matrix input */
994:     if (!mumps->myid) {
995:       mumps->id.nz =mumps->nz; mumps->id.irn=mumps->irn; mumps->id.jcn=mumps->jcn;
996:       if (mumps->id.ICNTL(6)>1) {
997: #if defined(PETSC_USE_COMPLEX)
998: #if defined(PETSC_USE_REAL_SINGLE)
999:         mumps->id.a = (mumps_complex*)mumps->val;
1000: #else
1001:         mumps->id.a = (mumps_double_complex*)mumps->val;
1002: #endif
1003: #else
1004:         mumps->id.a = mumps->val;
1005: #endif
1006:       }
1007:     }
1008:     break;
1009:   case 3:  /* distributed assembled matrix input (size>1) */
1010:     mumps->id.nz_loc = mumps->nz;
1011:     mumps->id.irn_loc=mumps->irn; mumps->id.jcn_loc=mumps->jcn;
1012:     if (mumps->id.ICNTL(6)>1) {
1013: #if defined(PETSC_USE_COMPLEX)
1014: #if defined(PETSC_USE_REAL_SINGLE)
1015:       mumps->id.a_loc = (mumps_complex*)mumps->val;
1016: #else
1017:       mumps->id.a_loc = (mumps_double_complex*)mumps->val;
1018: #endif
1019: #else
1020:       mumps->id.a_loc = mumps->val;
1021: #endif
1022:     }
1023:     /* MUMPS only supports centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
1024:     if (!mumps->myid) {
1025:       VecCreateSeq(PETSC_COMM_SELF,A->cmap->N,&mumps->b_seq);
1026:       ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,&is_iden);
1027:     } else {
1028:       VecCreateSeq(PETSC_COMM_SELF,0,&mumps->b_seq);
1029:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_iden);
1030:     }
1031:     VecCreate(PetscObjectComm((PetscObject)A),&b);
1032:     VecSetSizes(b,A->rmap->n,PETSC_DECIDE);
1033:     VecSetFromOptions(b);

1035:     VecScatterCreate(b,is_iden,mumps->b_seq,is_iden,&mumps->scat_rhs);
1036:     ISDestroy(&is_iden);
1037:     VecDestroy(&b);
1038:     break;
1039:   }
1040:   PetscMUMPS_c(&mumps->id);
1041:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

1043:   F->ops->lufactornumeric = MatFactorNumeric_MUMPS;
1044:   F->ops->solve           = MatSolve_MUMPS;
1045:   F->ops->solvetranspose  = MatSolveTranspose_MUMPS;
1046:   return(0);
1047: }

1049: /* Note the Petsc r permutation and factor info are ignored */
1052: PetscErrorCode MatCholeskyFactorSymbolic_MUMPS(Mat F,Mat A,IS r,const MatFactorInfo *info)
1053: {
1054:   Mat_MUMPS      *mumps = (Mat_MUMPS*)F->spptr;
1056:   Vec            b;
1057:   IS             is_iden;
1058:   const PetscInt M = A->rmap->N;

1061:   mumps->matstruc = DIFFERENT_NONZERO_PATTERN;

1063:   /* Set MUMPS options from the options database */
1064:   PetscSetMUMPSFromOptions(F,A);

1066:   (*mumps->ConvertToTriples)(A, 1, MAT_INITIAL_MATRIX, &mumps->nz, &mumps->irn, &mumps->jcn, &mumps->val);

1068:   /* analysis phase */
1069:   /*----------------*/
1070:   mumps->id.job = JOB_FACTSYMBOLIC;
1071:   mumps->id.n   = M;
1072:   switch (mumps->id.ICNTL(18)) {
1073:   case 0:  /* centralized assembled matrix input */
1074:     if (!mumps->myid) {
1075:       mumps->id.nz =mumps->nz; mumps->id.irn=mumps->irn; mumps->id.jcn=mumps->jcn;
1076:       if (mumps->id.ICNTL(6)>1) {
1077: #if defined(PETSC_USE_COMPLEX)
1078: #if defined(PETSC_USE_REAL_SINGLE)
1079:         mumps->id.a = (mumps_complex*)mumps->val;
1080: #else
1081:         mumps->id.a = (mumps_double_complex*)mumps->val;
1082: #endif
1083: #else
1084:         mumps->id.a = mumps->val;
1085: #endif
1086:       }
1087:     }
1088:     break;
1089:   case 3:  /* distributed assembled matrix input (size>1) */
1090:     mumps->id.nz_loc = mumps->nz;
1091:     mumps->id.irn_loc=mumps->irn; mumps->id.jcn_loc=mumps->jcn;
1092:     if (mumps->id.ICNTL(6)>1) {
1093: #if defined(PETSC_USE_COMPLEX)
1094: #if defined(PETSC_USE_REAL_SINGLE)
1095:       mumps->id.a_loc = (mumps_complex*)mumps->val;
1096: #else
1097:       mumps->id.a_loc = (mumps_double_complex*)mumps->val;
1098: #endif
1099: #else
1100:       mumps->id.a_loc = mumps->val;
1101: #endif
1102:     }
1103:     /* MUMPS only supports centralized rhs. Create scatter scat_rhs for repeated use in MatSolve() */
1104:     if (!mumps->myid) {
1105:       VecCreateSeq(PETSC_COMM_SELF,A->cmap->N,&mumps->b_seq);
1106:       ISCreateStride(PETSC_COMM_SELF,A->cmap->N,0,1,&is_iden);
1107:     } else {
1108:       VecCreateSeq(PETSC_COMM_SELF,0,&mumps->b_seq);
1109:       ISCreateStride(PETSC_COMM_SELF,0,0,1,&is_iden);
1110:     }
1111:     VecCreate(PetscObjectComm((PetscObject)A),&b);
1112:     VecSetSizes(b,A->rmap->n,PETSC_DECIDE);
1113:     VecSetFromOptions(b);

1115:     VecScatterCreate(b,is_iden,mumps->b_seq,is_iden,&mumps->scat_rhs);
1116:     ISDestroy(&is_iden);
1117:     VecDestroy(&b);
1118:     break;
1119:   }
1120:   PetscMUMPS_c(&mumps->id);
1121:   if (mumps->id.INFOG(1) < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_LIB,"Error reported by MUMPS in analysis phase: INFOG(1)=%d\n",mumps->id.INFOG(1));

1123:   F->ops->choleskyfactornumeric = MatFactorNumeric_MUMPS;
1124:   F->ops->solve                 = MatSolve_MUMPS;
1125:   F->ops->solvetranspose        = MatSolve_MUMPS;
1126:   F->ops->matsolve              = 0; /* use MatMatSolve_Basic() until mumps supports distributed rhs */
1127: #if !defined(PETSC_USE_COMPLEX)
1128:   F->ops->getinertia = MatGetInertia_SBAIJMUMPS;
1129: #else
1130:   F->ops->getinertia = NULL;
1131: #endif
1132:   return(0);
1133: }

1137: PetscErrorCode MatView_MUMPS(Mat A,PetscViewer viewer)
1138: {
1139:   PetscErrorCode    ierr;
1140:   PetscBool         iascii;
1141:   PetscViewerFormat format;
1142:   Mat_MUMPS         *mumps=(Mat_MUMPS*)A->spptr;

1145:   /* check if matrix is mumps type */
1146:   if (A->ops->solve != MatSolve_MUMPS) return(0);

1148:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1149:   if (iascii) {
1150:     PetscViewerGetFormat(viewer,&format);
1151:     if (format == PETSC_VIEWER_ASCII_INFO) {
1152:       PetscViewerASCIIPrintf(viewer,"MUMPS run parameters:\n");
1153:       PetscViewerASCIIPrintf(viewer,"  SYM (matrix type):                   %d \n",mumps->id.sym);
1154:       PetscViewerASCIIPrintf(viewer,"  PAR (host participation):            %d \n",mumps->id.par);
1155:       PetscViewerASCIIPrintf(viewer,"  ICNTL(1) (output for error):         %d \n",mumps->id.ICNTL(1));
1156:       PetscViewerASCIIPrintf(viewer,"  ICNTL(2) (output of diagnostic msg): %d \n",mumps->id.ICNTL(2));
1157:       PetscViewerASCIIPrintf(viewer,"  ICNTL(3) (output for global info):   %d \n",mumps->id.ICNTL(3));
1158:       PetscViewerASCIIPrintf(viewer,"  ICNTL(4) (level of printing):        %d \n",mumps->id.ICNTL(4));
1159:       PetscViewerASCIIPrintf(viewer,"  ICNTL(5) (input mat struct):         %d \n",mumps->id.ICNTL(5));
1160:       PetscViewerASCIIPrintf(viewer,"  ICNTL(6) (matrix prescaling):        %d \n",mumps->id.ICNTL(6));
1161:       PetscViewerASCIIPrintf(viewer,"  ICNTL(7) (sequentia matrix ordering):%d \n",mumps->id.ICNTL(7));
1162:       PetscViewerASCIIPrintf(viewer,"  ICNTL(8) (scalling strategy):        %d \n",mumps->id.ICNTL(8));
1163:       PetscViewerASCIIPrintf(viewer,"  ICNTL(10) (max num of refinements):  %d \n",mumps->id.ICNTL(10));
1164:       PetscViewerASCIIPrintf(viewer,"  ICNTL(11) (error analysis):          %d \n",mumps->id.ICNTL(11));
1165:       if (mumps->id.ICNTL(11)>0) {
1166:         PetscViewerASCIIPrintf(viewer,"    RINFOG(4) (inf norm of input mat):        %g\n",mumps->id.RINFOG(4));
1167:         PetscViewerASCIIPrintf(viewer,"    RINFOG(5) (inf norm of solution):         %g\n",mumps->id.RINFOG(5));
1168:         PetscViewerASCIIPrintf(viewer,"    RINFOG(6) (inf norm of residual):         %g\n",mumps->id.RINFOG(6));
1169:         PetscViewerASCIIPrintf(viewer,"    RINFOG(7),RINFOG(8) (backward error est): %g, %g\n",mumps->id.RINFOG(7),mumps->id.RINFOG(8));
1170:         PetscViewerASCIIPrintf(viewer,"    RINFOG(9) (error estimate):               %g \n",mumps->id.RINFOG(9));
1171:         PetscViewerASCIIPrintf(viewer,"    RINFOG(10),RINFOG(11)(condition numbers): %g, %g\n",mumps->id.RINFOG(10),mumps->id.RINFOG(11));
1172:       }
1173:       PetscViewerASCIIPrintf(viewer,"  ICNTL(12) (efficiency control):                         %d \n",mumps->id.ICNTL(12));
1174:       PetscViewerASCIIPrintf(viewer,"  ICNTL(13) (efficiency control):                         %d \n",mumps->id.ICNTL(13));
1175:       PetscViewerASCIIPrintf(viewer,"  ICNTL(14) (percentage of estimated workspace increase): %d \n",mumps->id.ICNTL(14));
1176:       /* ICNTL(15-17) not used */
1177:       PetscViewerASCIIPrintf(viewer,"  ICNTL(18) (input mat struct):                           %d \n",mumps->id.ICNTL(18));
1178:       PetscViewerASCIIPrintf(viewer,"  ICNTL(19) (Shur complement info):                       %d \n",mumps->id.ICNTL(19));
1179:       PetscViewerASCIIPrintf(viewer,"  ICNTL(20) (rhs sparse pattern):                         %d \n",mumps->id.ICNTL(20));
1180:       PetscViewerASCIIPrintf(viewer,"  ICNTL(21) (somumpstion struct):                            %d \n",mumps->id.ICNTL(21));
1181:       PetscViewerASCIIPrintf(viewer,"  ICNTL(22) (in-core/out-of-core facility):               %d \n",mumps->id.ICNTL(22));
1182:       PetscViewerASCIIPrintf(viewer,"  ICNTL(23) (max size of memory can be allocated locally):%d \n",mumps->id.ICNTL(23));

1184:       PetscViewerASCIIPrintf(viewer,"  ICNTL(24) (detection of null pivot rows):               %d \n",mumps->id.ICNTL(24));
1185:       PetscViewerASCIIPrintf(viewer,"  ICNTL(25) (computation of a null space basis):          %d \n",mumps->id.ICNTL(25));
1186:       PetscViewerASCIIPrintf(viewer,"  ICNTL(26) (Schur options for rhs or solution):          %d \n",mumps->id.ICNTL(26));
1187:       PetscViewerASCIIPrintf(viewer,"  ICNTL(27) (experimental parameter):                     %d \n",mumps->id.ICNTL(27));
1188:       PetscViewerASCIIPrintf(viewer,"  ICNTL(28) (use parallel or sequential ordering):        %d \n",mumps->id.ICNTL(28));
1189:       PetscViewerASCIIPrintf(viewer,"  ICNTL(29) (parallel ordering):                          %d \n",mumps->id.ICNTL(29));

1191:       PetscViewerASCIIPrintf(viewer,"  ICNTL(30) (user-specified set of entries in inv(A)):    %d \n",mumps->id.ICNTL(30));
1192:       PetscViewerASCIIPrintf(viewer,"  ICNTL(31) (factors is discarded in the solve phase):    %d \n",mumps->id.ICNTL(31));
1193:       PetscViewerASCIIPrintf(viewer,"  ICNTL(33) (compute determinant):                        %d \n",mumps->id.ICNTL(33));

1195:       PetscViewerASCIIPrintf(viewer,"  CNTL(1) (relative pivoting threshold):      %g \n",mumps->id.CNTL(1));
1196:       PetscViewerASCIIPrintf(viewer,"  CNTL(2) (stopping criterion of refinement): %g \n",mumps->id.CNTL(2));
1197:       PetscViewerASCIIPrintf(viewer,"  CNTL(3) (absomumpste pivoting threshold):      %g \n",mumps->id.CNTL(3));
1198:       PetscViewerASCIIPrintf(viewer,"  CNTL(4) (vamumpse of static pivoting):         %g \n",mumps->id.CNTL(4));
1199:       PetscViewerASCIIPrintf(viewer,"  CNTL(5) (fixation for null pivots):         %g \n",mumps->id.CNTL(5));

1201:       /* infomation local to each processor */
1202:       PetscViewerASCIIPrintf(viewer, "  RINFO(1) (local estimated flops for the elimination after analysis): \n");
1203:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
1204:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %g \n",mumps->myid,mumps->id.RINFO(1));
1205:       PetscViewerFlush(viewer);
1206:       PetscViewerASCIIPrintf(viewer, "  RINFO(2) (local estimated flops for the assembly after factorization): \n");
1207:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d]  %g \n",mumps->myid,mumps->id.RINFO(2));
1208:       PetscViewerFlush(viewer);
1209:       PetscViewerASCIIPrintf(viewer, "  RINFO(3) (local estimated flops for the elimination after factorization): \n");
1210:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d]  %g \n",mumps->myid,mumps->id.RINFO(3));
1211:       PetscViewerFlush(viewer);

1213:       PetscViewerASCIIPrintf(viewer, "  INFO(15) (estimated size of (in MB) MUMPS internal data for running numerical factorization): \n");
1214:       PetscViewerASCIISynchronizedPrintf(viewer,"  [%d] %d \n",mumps->myid,mumps->id.INFO(15));
1215:       PetscViewerFlush(viewer);

1217:       PetscViewerASCIIPrintf(viewer, "  INFO(16) (size of (in MB) MUMPS internal data used during numerical factorization): \n");
1218:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %d \n",mumps->myid,mumps->id.INFO(16));
1219:       PetscViewerFlush(viewer);

1221:       PetscViewerASCIIPrintf(viewer, "  INFO(23) (num of pivots eliminated on this processor after factorization): \n");
1222:       PetscViewerASCIISynchronizedPrintf(viewer,"    [%d] %d \n",mumps->myid,mumps->id.INFO(23));
1223:       PetscViewerFlush(viewer);
1224:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);

1226:       if (!mumps->myid) { /* information from the host */
1227:         PetscViewerASCIIPrintf(viewer,"  RINFOG(1) (global estimated flops for the elimination after analysis): %g \n",mumps->id.RINFOG(1));
1228:         PetscViewerASCIIPrintf(viewer,"  RINFOG(2) (global estimated flops for the assembly after factorization): %g \n",mumps->id.RINFOG(2));
1229:         PetscViewerASCIIPrintf(viewer,"  RINFOG(3) (global estimated flops for the elimination after factorization): %g \n",mumps->id.RINFOG(3));
1230:         PetscViewerASCIIPrintf(viewer,"  (RINFOG(12) RINFOG(13))*2^INFOG(34) (determinant): (%g,%g)*(2^%d)\n",mumps->id.RINFOG(12),mumps->id.RINFOG(13),mumps->id.INFOG(34));

1232:         PetscViewerASCIIPrintf(viewer,"  INFOG(3) (estimated real workspace for factors on all processors after analysis): %d \n",mumps->id.INFOG(3));
1233:         PetscViewerASCIIPrintf(viewer,"  INFOG(4) (estimated integer workspace for factors on all processors after analysis): %d \n",mumps->id.INFOG(4));
1234:         PetscViewerASCIIPrintf(viewer,"  INFOG(5) (estimated maximum front size in the complete tree): %d \n",mumps->id.INFOG(5));
1235:         PetscViewerASCIIPrintf(viewer,"  INFOG(6) (number of nodes in the complete tree): %d \n",mumps->id.INFOG(6));
1236:         PetscViewerASCIIPrintf(viewer,"  INFOG(7) (ordering option effectively use after analysis): %d \n",mumps->id.INFOG(7));
1237:         PetscViewerASCIIPrintf(viewer,"  INFOG(8) (structural symmetry in percent of the permuted matrix after analysis): %d \n",mumps->id.INFOG(8));
1238:         PetscViewerASCIIPrintf(viewer,"  INFOG(9) (total real/complex workspace to store the matrix factors after factorization): %d \n",mumps->id.INFOG(9));
1239:         PetscViewerASCIIPrintf(viewer,"  INFOG(10) (total integer space store the matrix factors after factorization): %d \n",mumps->id.INFOG(10));
1240:         PetscViewerASCIIPrintf(viewer,"  INFOG(11) (order of largest frontal matrix after factorization): %d \n",mumps->id.INFOG(11));
1241:         PetscViewerASCIIPrintf(viewer,"  INFOG(12) (number of off-diagonal pivots): %d \n",mumps->id.INFOG(12));
1242:         PetscViewerASCIIPrintf(viewer,"  INFOG(13) (number of delayed pivots after factorization): %d \n",mumps->id.INFOG(13));
1243:         PetscViewerASCIIPrintf(viewer,"  INFOG(14) (number of memory compress after factorization): %d \n",mumps->id.INFOG(14));
1244:         PetscViewerASCIIPrintf(viewer,"  INFOG(15) (number of steps of iterative refinement after solution): %d \n",mumps->id.INFOG(15));
1245:         PetscViewerASCIIPrintf(viewer,"  INFOG(16) (estimated size (in MB) of all MUMPS internal data for factorization after analysis: value on the most memory consuming processor): %d \n",mumps->id.INFOG(16));
1246:         PetscViewerASCIIPrintf(viewer,"  INFOG(17) (estimated size of all MUMPS internal data for factorization after analysis: sum over all processors): %d \n",mumps->id.INFOG(17));
1247:         PetscViewerASCIIPrintf(viewer,"  INFOG(18) (size of all MUMPS internal data allocated during factorization: value on the most memory consuming processor): %d \n",mumps->id.INFOG(18));
1248:         PetscViewerASCIIPrintf(viewer,"  INFOG(19) (size of all MUMPS internal data allocated during factorization: sum over all processors): %d \n",mumps->id.INFOG(19));
1249:         PetscViewerASCIIPrintf(viewer,"  INFOG(20) (estimated number of entries in the factors): %d \n",mumps->id.INFOG(20));
1250:         PetscViewerASCIIPrintf(viewer,"  INFOG(21) (size in MB of memory effectively used during factorization - value on the most memory consuming processor): %d \n",mumps->id.INFOG(21));
1251:         PetscViewerASCIIPrintf(viewer,"  INFOG(22) (size in MB of memory effectively used during factorization - sum over all processors): %d \n",mumps->id.INFOG(22));
1252:         PetscViewerASCIIPrintf(viewer,"  INFOG(23) (after analysis: value of ICNTL(6) effectively used): %d \n",mumps->id.INFOG(23));
1253:         PetscViewerASCIIPrintf(viewer,"  INFOG(24) (after analysis: value of ICNTL(12) effectively used): %d \n",mumps->id.INFOG(24));
1254:         PetscViewerASCIIPrintf(viewer,"  INFOG(25) (after factorization: number of pivots modified by static pivoting): %d \n",mumps->id.INFOG(25));
1255:       }
1256:     }
1257:   }
1258:   return(0);
1259: }

1263: PetscErrorCode MatGetInfo_MUMPS(Mat A,MatInfoType flag,MatInfo *info)
1264: {
1265:   Mat_MUMPS *mumps =(Mat_MUMPS*)A->spptr;

1268:   info->block_size        = 1.0;
1269:   info->nz_allocated      = mumps->id.INFOG(20);
1270:   info->nz_used           = mumps->id.INFOG(20);
1271:   info->nz_unneeded       = 0.0;
1272:   info->assemblies        = 0.0;
1273:   info->mallocs           = 0.0;
1274:   info->memory            = 0.0;
1275:   info->fill_ratio_given  = 0;
1276:   info->fill_ratio_needed = 0;
1277:   info->factor_mallocs    = 0;
1278:   return(0);
1279: }

1281: /* -------------------------------------------------------------------------------------------*/
1284: PetscErrorCode MatMumpsSetIcntl_MUMPS(Mat F,PetscInt icntl,PetscInt ival)
1285: {
1286:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->spptr;

1289:   mumps->id.ICNTL(icntl) = ival;
1290:   return(0);
1291: }

1295: /*@
1296:   MatMumpsSetIcntl - Set MUMPS parameter ICNTL()

1298:    Logically Collective on Mat

1300:    Input Parameters:
1301: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
1302: .  icntl - index of MUMPS parameter array ICNTL()
1303: -  ival - value of MUMPS ICNTL(icntl)

1305:   Options Database:
1306: .   -mat_mumps_icntl_<icntl> <ival>

1308:    Level: beginner

1310:    References: MUMPS Users' Guide

1312: .seealso: MatGetFactor()
1313: @*/
1314: PetscErrorCode MatMumpsSetIcntl(Mat F,PetscInt icntl,PetscInt ival)
1315: {

1321:   PetscTryMethod(F,"MatMumpsSetIcntl_C",(Mat,PetscInt,PetscInt),(F,icntl,ival));
1322:   return(0);
1323: }

1325: /* -------------------------------------------------------------------------------------------*/
1328: PetscErrorCode MatMumpsSetCntl_MUMPS(Mat F,PetscInt icntl,PetscReal val)
1329: {
1330:   Mat_MUMPS *mumps =(Mat_MUMPS*)F->spptr;

1333:   mumps->id.CNTL(icntl) = val;
1334:   return(0);
1335: }

1339: /*@
1340:   MatMumpsSetCntl - Set MUMPS parameter CNTL()

1342:    Logically Collective on Mat

1344:    Input Parameters:
1345: +  F - the factored matrix obtained by calling MatGetFactor() from PETSc-MUMPS interface
1346: .  icntl - index of MUMPS parameter array CNTL()
1347: -  val - value of MUMPS CNTL(icntl)

1349:   Options Database:
1350: .   -mat_mumps_cntl_<icntl> <val>

1352:    Level: beginner

1354:    References: MUMPS Users' Guide

1356: .seealso: MatGetFactor()
1357: @*/
1358: PetscErrorCode MatMumpsSetCntl(Mat F,PetscInt icntl,PetscReal val)
1359: {

1365:   PetscTryMethod(F,"MatMumpsSetCntl_C",(Mat,PetscInt,PetscReal),(F,icntl,val));
1366:   return(0);
1367: }

1369: /*MC
1370:   MATSOLVERMUMPS -  A matrix type providing direct solvers (LU and Cholesky) for
1371:   distributed and sequential matrices via the external package MUMPS.

1373:   Works with MATAIJ and MATSBAIJ matrices

1375:   Options Database Keys:
1376: + -mat_mumps_icntl_4 <0,...,4> - print level
1377: . -mat_mumps_icntl_6 <0,...,7> - matrix prescaling options (see MUMPS User's Guide)
1378: . -mat_mumps_icntl_7 <0,...,7> - matrix orderings (see MUMPS User's Guidec)
1379: . -mat_mumps_icntl_9 <1,2> - A or A^T x=b to be solved: 1 denotes A, 2 denotes A^T
1380: . -mat_mumps_icntl_10 <n> - maximum number of iterative refinements
1381: . -mat_mumps_icntl_11 <n> - error analysis, a positive value returns statistics during -ksp_view
1382: . -mat_mumps_icntl_12 <n> - efficiency control (see MUMPS User's Guide)
1383: . -mat_mumps_icntl_13 <n> - efficiency control (see MUMPS User's Guide)
1384: . -mat_mumps_icntl_14 <n> - efficiency control (see MUMPS User's Guide)
1385: . -mat_mumps_icntl_15 <n> - efficiency control (see MUMPS User's Guide)
1386: . -mat_mumps_cntl_1 <delta> - relative pivoting threshold
1387: . -mat_mumps_cntl_2 <tol> - stopping criterion for refinement
1388: - -mat_mumps_cntl_3 <adelta> - absolute pivoting threshold

1390:   Level: beginner

1392: .seealso: PCFactorSetMatSolverPackage(), MatSolverPackage

1394: M*/

1398: static PetscErrorCode MatFactorGetSolverPackage_mumps(Mat A,const MatSolverPackage *type)
1399: {
1401:   *type = MATSOLVERMUMPS;
1402:   return(0);
1403: }

1405: /* MatGetFactor for Seq and MPI AIJ matrices */
1408: PETSC_EXTERN PetscErrorCode MatGetFactor_aij_mumps(Mat A,MatFactorType ftype,Mat *F)
1409: {
1410:   Mat            B;
1412:   Mat_MUMPS      *mumps;
1413:   PetscBool      isSeqAIJ;

1416:   /* Create the factorization matrix */
1417:   PetscObjectTypeCompare((PetscObject)A,MATSEQAIJ,&isSeqAIJ);
1418:   MatCreate(PetscObjectComm((PetscObject)A),&B);
1419:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1420:   MatSetType(B,((PetscObject)A)->type_name);
1421:   if (isSeqAIJ) {
1422:     MatSeqAIJSetPreallocation(B,0,NULL);
1423:   } else {
1424:     MatMPIAIJSetPreallocation(B,0,NULL,0,NULL);
1425:   }

1427:   PetscNewLog(B,Mat_MUMPS,&mumps);

1429:   B->ops->view    = MatView_MUMPS;
1430:   B->ops->getinfo = MatGetInfo_MUMPS;

1432:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mumps);
1433:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
1434:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);
1435:   if (ftype == MAT_FACTOR_LU) {
1436:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_AIJMUMPS;
1437:     B->factortype            = MAT_FACTOR_LU;
1438:     if (isSeqAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqaij_seqaij;
1439:     else mumps->ConvertToTriples = MatConvertToTriples_mpiaij_mpiaij;
1440:     mumps->sym = 0;
1441:   } else {
1442:     B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_MUMPS;
1443:     B->factortype                  = MAT_FACTOR_CHOLESKY;
1444:     if (isSeqAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqaij_seqsbaij;
1445:     else mumps->ConvertToTriples = MatConvertToTriples_mpiaij_mpisbaij;
1446:     if (A->spd_set && A->spd) mumps->sym = 1;
1447:     else                      mumps->sym = 2;
1448:   }

1450:   mumps->isAIJ    = PETSC_TRUE;
1451:   mumps->Destroy  = B->ops->destroy;
1452:   B->ops->destroy = MatDestroy_MUMPS;
1453:   B->spptr        = (void*)mumps;

1455:   PetscInitializeMUMPS(A,mumps);

1457:   *F = B;
1458:   return(0);
1459: }

1461: /* MatGetFactor for Seq and MPI SBAIJ matrices */
1464: PETSC_EXTERN PetscErrorCode MatGetFactor_sbaij_mumps(Mat A,MatFactorType ftype,Mat *F)
1465: {
1466:   Mat            B;
1468:   Mat_MUMPS      *mumps;
1469:   PetscBool      isSeqSBAIJ;

1472:   if (ftype != MAT_FACTOR_CHOLESKY) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Cannot use PETSc SBAIJ matrices with MUMPS LU, use AIJ matrix");
1473:   if (A->rmap->bs > 1) SETERRQ(PetscObjectComm((PetscObject)A),PETSC_ERR_SUP,"Cannot use PETSc SBAIJ matrices with block size > 1 with MUMPS Cholesky, use AIJ matrix instead");
1474:   PetscObjectTypeCompare((PetscObject)A,MATSEQSBAIJ,&isSeqSBAIJ);
1475:   /* Create the factorization matrix */
1476:   MatCreate(PetscObjectComm((PetscObject)A),&B);
1477:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1478:   MatSetType(B,((PetscObject)A)->type_name);
1479:   PetscNewLog(B,Mat_MUMPS,&mumps);
1480:   if (isSeqSBAIJ) {
1481:     MatSeqSBAIJSetPreallocation(B,1,0,NULL);

1483:     mumps->ConvertToTriples = MatConvertToTriples_seqsbaij_seqsbaij;
1484:   } else {
1485:     MatMPISBAIJSetPreallocation(B,1,0,NULL,0,NULL);

1487:     mumps->ConvertToTriples = MatConvertToTriples_mpisbaij_mpisbaij;
1488:   }

1490:   B->ops->choleskyfactorsymbolic = MatCholeskyFactorSymbolic_MUMPS;
1491:   B->ops->view                   = MatView_MUMPS;

1493:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mumps);
1494:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl);
1495:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl);

1497:   B->factortype = MAT_FACTOR_CHOLESKY;
1498:   if (A->spd_set && A->spd) mumps->sym = 1;
1499:   else                      mumps->sym = 2;

1501:   mumps->isAIJ    = PETSC_FALSE;
1502:   mumps->Destroy  = B->ops->destroy;
1503:   B->ops->destroy = MatDestroy_MUMPS;
1504:   B->spptr        = (void*)mumps;

1506:   PetscInitializeMUMPS(A,mumps);

1508:   *F = B;
1509:   return(0);
1510: }

1514: PETSC_EXTERN PetscErrorCode MatGetFactor_baij_mumps(Mat A,MatFactorType ftype,Mat *F)
1515: {
1516:   Mat            B;
1518:   Mat_MUMPS      *mumps;
1519:   PetscBool      isSeqBAIJ;

1522:   /* Create the factorization matrix */
1523:   PetscObjectTypeCompare((PetscObject)A,MATSEQBAIJ,&isSeqBAIJ);
1524:   MatCreate(PetscObjectComm((PetscObject)A),&B);
1525:   MatSetSizes(B,A->rmap->n,A->cmap->n,A->rmap->N,A->cmap->N);
1526:   MatSetType(B,((PetscObject)A)->type_name);
1527:   if (isSeqBAIJ) {
1528:     MatSeqBAIJSetPreallocation(B,A->rmap->bs,0,NULL);
1529:   } else {
1530:     MatMPIBAIJSetPreallocation(B,A->rmap->bs,0,NULL,0,NULL);
1531:   }

1533:   PetscNewLog(B,Mat_MUMPS,&mumps);
1534:   if (ftype == MAT_FACTOR_LU) {
1535:     B->ops->lufactorsymbolic = MatLUFactorSymbolic_BAIJMUMPS;
1536:     B->factortype            = MAT_FACTOR_LU;
1537:     if (isSeqBAIJ) mumps->ConvertToTriples = MatConvertToTriples_seqbaij_seqaij;
1538:     else mumps->ConvertToTriples = MatConvertToTriples_mpibaij_mpiaij;
1539:     mumps->sym = 0;
1540:   } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Cannot use PETSc BAIJ matrices with MUMPS Cholesky, use SBAIJ or AIJ matrix instead\n");

1542:   B->ops->view = MatView_MUMPS;

1544:   PetscObjectComposeFunction((PetscObject)B,"MatFactorGetSolverPackage_C",MatFactorGetSolverPackage_mumps);
1545:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetIcntl_C",MatMumpsSetIcntl_MUMPS);
1546:   PetscObjectComposeFunction((PetscObject)B,"MatMumpsSetCntl_C",MatMumpsSetCntl_MUMPS);

1548:   mumps->isAIJ    = PETSC_TRUE;
1549:   mumps->Destroy  = B->ops->destroy;
1550:   B->ops->destroy = MatDestroy_MUMPS;
1551:   B->spptr        = (void*)mumps;

1553:   PetscInitializeMUMPS(A,mumps);

1555:   *F = B;
1556:   return(0);
1557: }