Actual source code: ts.c
petsc-3.4.2 2013-07-02
2: #include <petsc-private/tsimpl.h> /*I "petscts.h" I*/
3: #include <petscdmshell.h>
4: #include <petscdmda.h>
5: #include <petscviewer.h>
6: #include <petscdraw.h>
8: /* Logging support */
9: PetscClassId TS_CLASSID, DMTS_CLASSID;
10: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;
12: const char *const TSExactFinalTimeOptions[] = {"STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};
16: /*
17: TSSetTypeFromOptions - Sets the type of ts from user options.
19: Collective on TS
21: Input Parameter:
22: . ts - The ts
24: Level: intermediate
26: .keywords: TS, set, options, database, type
27: .seealso: TSSetFromOptions(), TSSetType()
28: */
29: static PetscErrorCode TSSetTypeFromOptions(TS ts)
30: {
31: PetscBool opt;
32: const char *defaultType;
33: char typeName[256];
37: if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
38: else defaultType = TSEULER;
40: if (!TSRegisterAllCalled) {TSRegisterAll();}
41: PetscOptionsList("-ts_type", "TS method"," TSSetType", TSList, defaultType, typeName, 256, &opt);
42: if (opt) {
43: TSSetType(ts, typeName);
44: } else {
45: TSSetType(ts, defaultType);
46: }
47: return(0);
48: }
50: struct _n_TSMonitorDrawCtx {
51: PetscViewer viewer;
52: PetscDrawAxis axis;
53: Vec initialsolution;
54: PetscBool showinitial;
55: PetscInt howoften; /* when > 0 uses step % howoften, when negative only final solution plotted */
56: PetscBool showtimestepandtime;
57: int color;
58: };
62: /*@
63: TSSetFromOptions - Sets various TS parameters from user options.
65: Collective on TS
67: Input Parameter:
68: . ts - the TS context obtained from TSCreate()
70: Options Database Keys:
71: + -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSGL, TSSSP
72: . -ts_max_steps maxsteps - maximum number of time-steps to take
73: . -ts_final_time time - maximum time to compute to
74: . -ts_dt dt - initial time step
75: . -ts_monitor - print information at each timestep
76: . -ts_monitor_lg_timestep - Monitor timestep size graphically
77: . -ts_monitor_lg_solution - Monitor solution graphically
78: . -ts_monitor_lg_error - Monitor error graphically
79: . -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
80: . -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
81: . -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
82: . -ts_monitor_draw_solution - Monitor solution graphically
83: . -ts_monitor_draw_solution_phase - Monitor solution graphically with phase diagram
84: . -ts_monitor_draw_error - Monitor error graphically
85: . -ts_monitor_solution_binary <filename> - Save each solution to a binary file
86: - -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts
88: Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified
90: Level: beginner
92: .keywords: TS, timestep, set, options, database
94: .seealso: TSGetType()
95: @*/
96: PetscErrorCode TSSetFromOptions(TS ts)
97: {
98: PetscBool opt,flg;
99: PetscErrorCode ierr;
100: PetscViewer monviewer;
101: char monfilename[PETSC_MAX_PATH_LEN];
102: SNES snes;
103: TSAdapt adapt;
104: PetscReal time_step;
105: TSExactFinalTimeOption eftopt;
106: char dir[16];
110: PetscObjectOptionsBegin((PetscObject)ts);
111: /* Handle TS type options */
112: TSSetTypeFromOptions(ts);
114: /* Handle generic TS options */
115: PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
116: PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
117: PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
118: PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
119: if (flg) {
120: TSSetTimeStep(ts,time_step);
121: }
122: PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
123: if (flg) {TSSetExactFinalTime(ts,eftopt);}
124: PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
125: PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
126: PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
127: PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
128: PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);
130: /* Monitor options */
131: PetscOptionsString("-ts_monitor","Monitor timestep size","TSMonitorDefault","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
132: if (flg) {
133: PetscViewerASCIIOpen(PetscObjectComm((PetscObject)ts),monfilename,&monviewer);
134: TSMonitorSet(ts,TSMonitorDefault,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
135: }
136: PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
137: if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}
139: PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
140: if (opt) {
141: TSMonitorLGCtx ctx;
142: PetscInt howoften = 1;
144: PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
145: TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
146: TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
147: }
148: PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
149: if (opt) {
150: TSMonitorLGCtx ctx;
151: PetscInt howoften = 1;
153: PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
154: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
155: TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
156: }
157: PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
158: if (opt) {
159: TSMonitorLGCtx ctx;
160: PetscInt howoften = 1;
162: PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
163: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
164: TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
165: }
166: PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
167: if (opt) {
168: TSMonitorLGCtx ctx;
169: PetscInt howoften = 1;
171: PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
172: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
173: TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
174: }
175: PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
176: if (opt) {
177: TSMonitorLGCtx ctx;
178: PetscInt howoften = 1;
180: PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
181: TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
182: TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
183: }
184: PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
185: if (opt) {
186: TSMonitorSPEigCtx ctx;
187: PetscInt howoften = 1;
189: PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
190: TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
191: TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
192: }
193: opt = PETSC_FALSE;
194: PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
195: if (opt) {
196: TSMonitorDrawCtx ctx;
197: PetscInt howoften = 1;
199: PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
200: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
201: TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
202: }
203: opt = PETSC_FALSE;
204: PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
205: if (opt) {
206: TSMonitorDrawCtx ctx;
207: PetscReal bounds[4];
208: PetscInt n = 4;
209: PetscDraw draw;
211: PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
212: if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
213: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,1,&ctx);
214: PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
215: PetscDrawClear(draw);
216: PetscDrawAxisCreate(draw,&ctx->axis);
217: PetscDrawAxisSetLimits(ctx->axis,bounds[0],bounds[2],bounds[1],bounds[3]);
218: PetscDrawAxisSetLabels(ctx->axis,"Phase Diagram","Variable 1","Variable 2");
219: PetscDrawAxisDraw(ctx->axis);
220: /* PetscDrawSetCoordinates(draw,bounds[0],bounds[1],bounds[2],bounds[3]); */
221: TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
222: }
223: opt = PETSC_FALSE;
224: PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
225: if (opt) {
226: TSMonitorDrawCtx ctx;
227: PetscInt howoften = 1;
229: PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
230: TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
231: TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
232: }
233: opt = PETSC_FALSE;
234: PetscOptionsString("-ts_monitor_solution_binary","Save each solution to a binary file","TSMonitorSolutionBinary",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
235: if (flg) {
236: PetscViewer ctx;
237: if (monfilename[0]) {
238: PetscViewerBinaryOpen(PetscObjectComm((PetscObject)ts),monfilename,FILE_MODE_WRITE,&ctx);
239: TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))PetscViewerDestroy);
240: } else {
241: ctx = PETSC_VIEWER_BINARY_(PetscObjectComm((PetscObject)ts));
242: TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))NULL);
243: }
244: }
245: opt = PETSC_FALSE;
246: PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
247: if (flg) {
248: const char *ptr,*ptr2;
249: char *filetemplate;
250: if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
251: /* Do some cursory validation of the input. */
252: PetscStrstr(monfilename,"%",(char**)&ptr);
253: if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
254: for (ptr++; ptr && *ptr; ptr++) {
255: PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
256: if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
257: if (ptr2) break;
258: }
259: PetscStrallocpy(monfilename,&filetemplate);
260: TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
261: }
263: PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
264: if (flg) {
265: TSMonitorDMDARayCtx *rayctx;
266: int ray = 0;
267: DMDADirection ddir;
268: DM da;
269: PetscMPIInt rank;
271: if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
272: if (dir[0] == 'x') ddir = DMDA_X;
273: else if (dir[0] == 'y') ddir = DMDA_Y;
274: else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
275: sscanf(dir+2,"%d",&ray);
277: PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
278: PetscNew(TSMonitorDMDARayCtx,&rayctx);
279: TSGetDM(ts,&da);
280: DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
281: MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
282: if (!rank) {
283: PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
284: }
285: TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
286: }
288: TSGetAdapt(ts,&adapt);
289: TSAdaptSetFromOptions(adapt);
291: TSGetSNES(ts,&snes);
292: if (ts->problem_type == TS_LINEAR) {SNESSetType(snes,SNESKSPONLY);}
294: /* Handle specific TS options */
295: if (ts->ops->setfromoptions) {
296: (*ts->ops->setfromoptions)(ts);
297: }
299: /* process any options handlers added with PetscObjectAddOptionsHandler() */
300: PetscObjectProcessOptionsHandlers((PetscObject)ts);
301: PetscOptionsEnd();
302: return(0);
303: }
308: /*@
309: TSComputeRHSJacobian - Computes the Jacobian matrix that has been
310: set with TSSetRHSJacobian().
312: Collective on TS and Vec
314: Input Parameters:
315: + ts - the TS context
316: . t - current timestep
317: - U - input vector
319: Output Parameters:
320: + A - Jacobian matrix
321: . B - optional preconditioning matrix
322: - flag - flag indicating matrix structure
324: Notes:
325: Most users should not need to explicitly call this routine, as it
326: is used internally within the nonlinear solvers.
328: See KSPSetOperators() for important information about setting the
329: flag parameter.
331: Level: developer
333: .keywords: SNES, compute, Jacobian, matrix
335: .seealso: TSSetRHSJacobian(), KSPSetOperators()
336: @*/
337: PetscErrorCode TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg)
338: {
340: PetscInt Ustate;
341: DM dm;
342: DMTS tsdm;
343: TSRHSJacobian rhsjacobianfunc;
344: void *ctx;
345: TSIJacobian ijacobianfunc;
351: TSGetDM(ts,&dm);
352: DMGetDMTS(dm,&tsdm);
353: DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
354: DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
355: PetscObjectStateQuery((PetscObject)U,&Ustate);
356: if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate))) {
357: *flg = ts->rhsjacobian.mstructure;
358: return(0);
359: }
361: if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
363: if (rhsjacobianfunc) {
364: PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
365: *flg = DIFFERENT_NONZERO_PATTERN;
366: PetscStackPush("TS user Jacobian function");
367: (*rhsjacobianfunc)(ts,t,U,A,B,flg,ctx);
368: PetscStackPop;
369: PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
370: /* make sure user returned a correct Jacobian and preconditioner */
373: } else {
374: MatZeroEntries(*A);
375: if (*A != *B) {MatZeroEntries(*B);}
376: *flg = SAME_NONZERO_PATTERN;
377: }
378: ts->rhsjacobian.time = t;
379: ts->rhsjacobian.X = U;
380: PetscObjectStateQuery((PetscObject)U,&ts->rhsjacobian.Xstate);
381: ts->rhsjacobian.mstructure = *flg;
382: return(0);
383: }
387: /*@
388: TSComputeRHSFunction - Evaluates the right-hand-side function.
390: Collective on TS and Vec
392: Input Parameters:
393: + ts - the TS context
394: . t - current time
395: - U - state vector
397: Output Parameter:
398: . y - right hand side
400: Note:
401: Most users should not need to explicitly call this routine, as it
402: is used internally within the nonlinear solvers.
404: Level: developer
406: .keywords: TS, compute
408: .seealso: TSSetRHSFunction(), TSComputeIFunction()
409: @*/
410: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
411: {
413: TSRHSFunction rhsfunction;
414: TSIFunction ifunction;
415: void *ctx;
416: DM dm;
422: TSGetDM(ts,&dm);
423: DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
424: DMTSGetIFunction(dm,&ifunction,NULL);
426: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
428: PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
429: if (rhsfunction) {
430: PetscStackPush("TS user right-hand-side function");
431: (*rhsfunction)(ts,t,U,y,ctx);
432: PetscStackPop;
433: } else {
434: VecZeroEntries(y);
435: }
437: PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
438: return(0);
439: }
443: /*@
444: TSComputeSolutionFunction - Evaluates the solution function.
446: Collective on TS and Vec
448: Input Parameters:
449: + ts - the TS context
450: - t - current time
452: Output Parameter:
453: . U - the solution
455: Note:
456: Most users should not need to explicitly call this routine, as it
457: is used internally within the nonlinear solvers.
459: Level: developer
461: .keywords: TS, compute
463: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
464: @*/
465: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
466: {
467: PetscErrorCode ierr;
468: TSSolutionFunction solutionfunction;
469: void *ctx;
470: DM dm;
475: TSGetDM(ts,&dm);
476: DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);
478: if (solutionfunction) {
479: PetscStackPush("TS user solution function");
480: (*solutionfunction)(ts,t,U,ctx);
481: PetscStackPop;
482: }
483: return(0);
484: }
487: /*@
488: TSComputeForcingFunction - Evaluates the forcing function.
490: Collective on TS and Vec
492: Input Parameters:
493: + ts - the TS context
494: - t - current time
496: Output Parameter:
497: . U - the function value
499: Note:
500: Most users should not need to explicitly call this routine, as it
501: is used internally within the nonlinear solvers.
503: Level: developer
505: .keywords: TS, compute
507: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
508: @*/
509: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
510: {
511: PetscErrorCode ierr, (*forcing)(TS,PetscReal,Vec,void*);
512: void *ctx;
513: DM dm;
518: TSGetDM(ts,&dm);
519: DMTSGetForcingFunction(dm,&forcing,&ctx);
521: if (forcing) {
522: PetscStackPush("TS user forcing function");
523: (*forcing)(ts,t,U,ctx);
524: PetscStackPop;
525: }
526: return(0);
527: }
531: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
532: {
533: Vec F;
537: *Frhs = NULL;
538: TSGetIFunction(ts,&F,NULL,NULL);
539: if (!ts->Frhs) {
540: VecDuplicate(F,&ts->Frhs);
541: }
542: *Frhs = ts->Frhs;
543: return(0);
544: }
548: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
549: {
550: Mat A,B;
554: TSGetIJacobian(ts,&A,&B,NULL,NULL);
555: if (Arhs) {
556: if (!ts->Arhs) {
557: MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
558: }
559: *Arhs = ts->Arhs;
560: }
561: if (Brhs) {
562: if (!ts->Brhs) {
563: MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
564: }
565: *Brhs = ts->Brhs;
566: }
567: return(0);
568: }
572: /*@
573: TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0
575: Collective on TS and Vec
577: Input Parameters:
578: + ts - the TS context
579: . t - current time
580: . U - state vector
581: . Udot - time derivative of state vector
582: - imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate
584: Output Parameter:
585: . Y - right hand side
587: Note:
588: Most users should not need to explicitly call this routine, as it
589: is used internally within the nonlinear solvers.
591: If the user did did not write their equations in implicit form, this
592: function recasts them in implicit form.
594: Level: developer
596: .keywords: TS, compute
598: .seealso: TSSetIFunction(), TSComputeRHSFunction()
599: @*/
600: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
601: {
603: TSIFunction ifunction;
604: TSRHSFunction rhsfunction;
605: void *ctx;
606: DM dm;
614: TSGetDM(ts,&dm);
615: DMTSGetIFunction(dm,&ifunction,&ctx);
616: DMTSGetRHSFunction(dm,&rhsfunction,NULL);
618: if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");
620: PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
621: if (ifunction) {
622: PetscStackPush("TS user implicit function");
623: (*ifunction)(ts,t,U,Udot,Y,ctx);
624: PetscStackPop;
625: }
626: if (imex) {
627: if (!ifunction) {
628: VecCopy(Udot,Y);
629: }
630: } else if (rhsfunction) {
631: if (ifunction) {
632: Vec Frhs;
633: TSGetRHSVec_Private(ts,&Frhs);
634: TSComputeRHSFunction(ts,t,U,Frhs);
635: VecAXPY(Y,-1,Frhs);
636: } else {
637: TSComputeRHSFunction(ts,t,U,Y);
638: VecAYPX(Y,-1,Udot);
639: }
640: }
641: PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
642: return(0);
643: }
647: /*@
648: TSComputeIJacobian - Evaluates the Jacobian of the DAE
650: Collective on TS and Vec
652: Input
653: Input Parameters:
654: + ts - the TS context
655: . t - current timestep
656: . U - state vector
657: . Udot - time derivative of state vector
658: . shift - shift to apply, see note below
659: - imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate
661: Output Parameters:
662: + A - Jacobian matrix
663: . B - optional preconditioning matrix
664: - flag - flag indicating matrix structure
666: Notes:
667: If F(t,U,Udot)=0 is the DAE, the required Jacobian is
669: dF/dU + shift*dF/dUdot
671: Most users should not need to explicitly call this routine, as it
672: is used internally within the nonlinear solvers.
674: Level: developer
676: .keywords: TS, compute, Jacobian, matrix
678: .seealso: TSSetIJacobian()
679: @*/
680: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,PetscBool imex)
681: {
682: PetscInt Ustate, Udotstate;
684: TSIJacobian ijacobian;
685: TSRHSJacobian rhsjacobian;
686: DM dm;
687: void *ctx;
699: TSGetDM(ts,&dm);
700: DMTSGetIJacobian(dm,&ijacobian,&ctx);
701: DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);
703: PetscObjectStateQuery((PetscObject)U,&Ustate);
704: PetscObjectStateQuery((PetscObject)Udot,&Udotstate);
705: if (ts->ijacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->ijacobian.X == U && ts->ijacobian.Xstate == Ustate && ts->ijacobian.Xdot == Udot && ts->ijacobian.Xdotstate == Udotstate && ts->ijacobian.imex == imex))) {
706: *flg = ts->ijacobian.mstructure;
707: MatScale(*A, shift / ts->ijacobian.shift);
708: return(0);
709: }
711: if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");
713: *flg = SAME_NONZERO_PATTERN; /* In case we're solving a linear problem in which case it wouldn't get initialized below. */
714: PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
715: if (ijacobian) {
716: *flg = DIFFERENT_NONZERO_PATTERN;
717: PetscStackPush("TS user implicit Jacobian");
718: (*ijacobian)(ts,t,U,Udot,shift,A,B,flg,ctx);
719: PetscStackPop;
720: /* make sure user returned a correct Jacobian and preconditioner */
723: }
724: if (imex) {
725: if (!ijacobian) { /* system was written as Udot = G(t,U) */
726: MatZeroEntries(*A);
727: MatShift(*A,shift);
728: if (*A != *B) {
729: MatZeroEntries(*B);
730: MatShift(*B,shift);
731: }
732: *flg = SAME_PRECONDITIONER;
733: }
734: } else {
735: if (!ijacobian) {
736: TSComputeRHSJacobian(ts,t,U,A,B,flg);
737: MatScale(*A,-1);
738: MatShift(*A,shift);
739: if (*A != *B) {
740: MatScale(*B,-1);
741: MatShift(*B,shift);
742: }
743: } else if (rhsjacobian) {
744: Mat Arhs,Brhs;
745: MatStructure axpy,flg2 = DIFFERENT_NONZERO_PATTERN;
746: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
747: TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
748: axpy = (*flg == flg2) ? SAME_NONZERO_PATTERN : DIFFERENT_NONZERO_PATTERN;
749: MatAXPY(*A,-1,Arhs,axpy);
750: if (*A != *B) {
751: MatAXPY(*B,-1,Brhs,axpy);
752: }
753: *flg = PetscMin(*flg,flg2);
754: }
755: }
757: ts->ijacobian.time = t;
758: ts->ijacobian.X = U;
759: ts->ijacobian.Xdot = Udot;
761: PetscObjectStateQuery((PetscObject)U,&ts->ijacobian.Xstate);
762: PetscObjectStateQuery((PetscObject)Udot,&ts->ijacobian.Xdotstate);
764: ts->ijacobian.shift = shift;
765: ts->ijacobian.imex = imex;
766: ts->ijacobian.mstructure = *flg;
768: PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
769: return(0);
770: }
774: /*@C
775: TSSetRHSFunction - Sets the routine for evaluating the function,
776: where U_t = G(t,u).
778: Logically Collective on TS
780: Input Parameters:
781: + ts - the TS context obtained from TSCreate()
782: . r - vector to put the computed right hand side (or NULL to have it created)
783: . f - routine for evaluating the right-hand-side function
784: - ctx - [optional] user-defined context for private data for the
785: function evaluation routine (may be NULL)
787: Calling sequence of func:
788: $ func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);
790: + t - current timestep
791: . u - input vector
792: . F - function vector
793: - ctx - [optional] user-defined function context
795: Level: beginner
797: .keywords: TS, timestep, set, right-hand-side, function
799: .seealso: TSSetRHSJacobian(), TSSetIJacobian()
800: @*/
801: PetscErrorCode TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
802: {
804: SNES snes;
805: Vec ralloc = NULL;
806: DM dm;
812: TSGetDM(ts,&dm);
813: DMTSSetRHSFunction(dm,f,ctx);
814: TSGetSNES(ts,&snes);
815: if (!r && !ts->dm && ts->vec_sol) {
816: VecDuplicate(ts->vec_sol,&ralloc);
817: r = ralloc;
818: }
819: SNESSetFunction(snes,r,SNESTSFormFunction,ts);
820: VecDestroy(&ralloc);
821: return(0);
822: }
826: /*@C
827: TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE
829: Logically Collective on TS
831: Input Parameters:
832: + ts - the TS context obtained from TSCreate()
833: . f - routine for evaluating the solution
834: - ctx - [optional] user-defined context for private data for the
835: function evaluation routine (may be NULL)
837: Calling sequence of func:
838: $ func (TS ts,PetscReal t,Vec u,void *ctx);
840: + t - current timestep
841: . u - output vector
842: - ctx - [optional] user-defined function context
844: Notes:
845: This routine is used for testing accuracy of time integration schemes when you already know the solution.
846: If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
847: create closed-form solutions with non-physical forcing terms.
849: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
851: Level: beginner
853: .keywords: TS, timestep, set, right-hand-side, function
855: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
856: @*/
857: PetscErrorCode TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
858: {
860: DM dm;
864: TSGetDM(ts,&dm);
865: DMTSSetSolutionFunction(dm,f,ctx);
866: return(0);
867: }
871: /*@C
872: TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE
874: Logically Collective on TS
876: Input Parameters:
877: + ts - the TS context obtained from TSCreate()
878: . f - routine for evaluating the forcing function
879: - ctx - [optional] user-defined context for private data for the
880: function evaluation routine (may be NULL)
882: Calling sequence of func:
883: $ func (TS ts,PetscReal t,Vec u,void *ctx);
885: + t - current timestep
886: . u - output vector
887: - ctx - [optional] user-defined function context
889: Notes:
890: This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
891: create closed-form solutions with a non-physical forcing term.
893: For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.
895: Level: beginner
897: .keywords: TS, timestep, set, right-hand-side, function
899: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
900: @*/
901: PetscErrorCode TSSetForcingFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
902: {
904: DM dm;
908: TSGetDM(ts,&dm);
909: DMTSSetForcingFunction(dm,f,ctx);
910: return(0);
911: }
915: /*@C
916: TSSetRHSJacobian - Sets the function to compute the Jacobian of F,
917: where U_t = G(U,t), as well as the location to store the matrix.
919: Logically Collective on TS
921: Input Parameters:
922: + ts - the TS context obtained from TSCreate()
923: . Amat - (approximate) Jacobian matrix
924: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
925: . f - the Jacobian evaluation routine
926: - ctx - [optional] user-defined context for private data for the
927: Jacobian evaluation routine (may be NULL)
929: Calling sequence of func:
930: $ func (TS ts,PetscReal t,Vec u,Mat *A,Mat *B,MatStructure *flag,void *ctx);
932: + t - current timestep
933: . u - input vector
934: . Amat - (approximate) Jacobian matrix
935: . Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
936: . flag - flag indicating information about the preconditioner matrix
937: structure (same as flag in KSPSetOperators())
938: - ctx - [optional] user-defined context for matrix evaluation routine
940: Notes:
941: See KSPSetOperators() for important information about setting the flag
942: output parameter in the routine func(). Be sure to read this information!
944: The routine func() takes Mat * as the matrix arguments rather than Mat.
945: This allows the matrix evaluation routine to replace A and/or B with a
946: completely new matrix structure (not just different matrix elements)
947: when appropriate, for instance, if the nonzero structure is changing
948: throughout the global iterations.
950: Level: beginner
952: .keywords: TS, timestep, set, right-hand-side, Jacobian
954: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction()
956: @*/
957: PetscErrorCode TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
958: {
960: SNES snes;
961: DM dm;
962: TSIJacobian ijacobian;
971: TSGetDM(ts,&dm);
972: DMTSSetRHSJacobian(dm,f,ctx);
973: DMTSGetIJacobian(dm,&ijacobian,NULL);
975: TSGetSNES(ts,&snes);
976: if (!ijacobian) {
977: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
978: }
979: if (Amat) {
980: PetscObjectReference((PetscObject)Amat);
981: MatDestroy(&ts->Arhs);
983: ts->Arhs = Amat;
984: }
985: if (Pmat) {
986: PetscObjectReference((PetscObject)Pmat);
987: MatDestroy(&ts->Brhs);
989: ts->Brhs = Pmat;
990: }
991: return(0);
992: }
997: /*@C
998: TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.
1000: Logically Collective on TS
1002: Input Parameters:
1003: + ts - the TS context obtained from TSCreate()
1004: . r - vector to hold the residual (or NULL to have it created internally)
1005: . f - the function evaluation routine
1006: - ctx - user-defined context for private data for the function evaluation routine (may be NULL)
1008: Calling sequence of f:
1009: $ f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);
1011: + t - time at step/stage being solved
1012: . u - state vector
1013: . u_t - time derivative of state vector
1014: . F - function vector
1015: - ctx - [optional] user-defined context for matrix evaluation routine
1017: Important:
1018: The user MUST call either this routine, TSSetRHSFunction(). This routine must be used when not solving an ODE, for example a DAE.
1020: Level: beginner
1022: .keywords: TS, timestep, set, DAE, Jacobian
1024: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1025: @*/
1026: PetscErrorCode TSSetIFunction(TS ts,Vec res,TSIFunction f,void *ctx)
1027: {
1029: SNES snes;
1030: Vec resalloc = NULL;
1031: DM dm;
1037: TSGetDM(ts,&dm);
1038: DMTSSetIFunction(dm,f,ctx);
1040: TSGetSNES(ts,&snes);
1041: if (!res && !ts->dm && ts->vec_sol) {
1042: VecDuplicate(ts->vec_sol,&resalloc);
1043: res = resalloc;
1044: }
1045: SNESSetFunction(snes,res,SNESTSFormFunction,ts);
1046: VecDestroy(&resalloc);
1047: return(0);
1048: }
1052: /*@C
1053: TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.
1055: Not Collective
1057: Input Parameter:
1058: . ts - the TS context
1060: Output Parameter:
1061: + r - vector to hold residual (or NULL)
1062: . func - the function to compute residual (or NULL)
1063: - ctx - the function context (or NULL)
1065: Level: advanced
1067: .keywords: TS, nonlinear, get, function
1069: .seealso: TSSetIFunction(), SNESGetFunction()
1070: @*/
1071: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1072: {
1074: SNES snes;
1075: DM dm;
1079: TSGetSNES(ts,&snes);
1080: SNESGetFunction(snes,r,NULL,NULL);
1081: TSGetDM(ts,&dm);
1082: DMTSGetIFunction(dm,func,ctx);
1083: return(0);
1084: }
1088: /*@C
1089: TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.
1091: Not Collective
1093: Input Parameter:
1094: . ts - the TS context
1096: Output Parameter:
1097: + r - vector to hold computed right hand side (or NULL)
1098: . func - the function to compute right hand side (or NULL)
1099: - ctx - the function context (or NULL)
1101: Level: advanced
1103: .keywords: TS, nonlinear, get, function
1105: .seealso: TSSetRhsfunction(), SNESGetFunction()
1106: @*/
1107: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1108: {
1110: SNES snes;
1111: DM dm;
1115: TSGetSNES(ts,&snes);
1116: SNESGetFunction(snes,r,NULL,NULL);
1117: TSGetDM(ts,&dm);
1118: DMTSGetRHSFunction(dm,func,ctx);
1119: return(0);
1120: }
1124: /*@C
1125: TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1126: you provided with TSSetIFunction().
1128: Logically Collective on TS
1130: Input Parameters:
1131: + ts - the TS context obtained from TSCreate()
1132: . Amat - (approximate) Jacobian matrix
1133: . Pmat - matrix used to compute preconditioner (usually the same as Amat)
1134: . f - the Jacobian evaluation routine
1135: - ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)
1137: Calling sequence of f:
1138: $ f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat *Amat,Mat *Pmat,MatStructure *flag,void *ctx);
1140: + t - time at step/stage being solved
1141: . U - state vector
1142: . U_t - time derivative of state vector
1143: . a - shift
1144: . Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1145: . Pmat - matrix used for constructing preconditioner, usually the same as Amat
1146: . flag - flag indicating information about the preconditioner matrix
1147: structure (same as flag in KSPSetOperators())
1148: - ctx - [optional] user-defined context for matrix evaluation routine
1150: Notes:
1151: The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.
1153: The matrix dF/dU + a*dF/dU_t you provide turns out to be
1154: the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1155: The time integrator internally approximates U_t by W+a*U where the positive "shift"
1156: a and vector W depend on the integration method, step size, and past states. For example with
1157: the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1158: W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt
1160: Level: beginner
1162: .keywords: TS, timestep, DAE, Jacobian
1164: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault()
1166: @*/
1167: PetscErrorCode TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1168: {
1170: SNES snes;
1171: DM dm;
1180: TSGetDM(ts,&dm);
1181: DMTSSetIJacobian(dm,f,ctx);
1183: TSGetSNES(ts,&snes);
1184: SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1185: return(0);
1186: }
1190: /*@C
1191: TSLoad - Loads a KSP that has been stored in binary with KSPView().
1193: Collective on PetscViewer
1195: Input Parameters:
1196: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1197: some related function before a call to TSLoad().
1198: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()
1200: Level: intermediate
1202: Notes:
1203: The type is determined by the data in the file, any type set into the TS before this call is ignored.
1205: Notes for advanced users:
1206: Most users should not need to know the details of the binary storage
1207: format, since TSLoad() and TSView() completely hide these details.
1208: But for anyone who's interested, the standard binary matrix storage
1209: format is
1210: .vb
1211: has not yet been determined
1212: .ve
1214: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1215: @*/
1216: PetscErrorCode TSLoad(TS ts, PetscViewer viewer)
1217: {
1219: PetscBool isbinary;
1220: PetscInt classid;
1221: char type[256];
1222: DMTS sdm;
1223: DM dm;
1228: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1229: if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");
1231: PetscViewerBinaryRead(viewer,&classid,1,PETSC_INT);
1232: if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1233: PetscViewerBinaryRead(viewer,type,256,PETSC_CHAR);
1234: TSSetType(ts, type);
1235: if (ts->ops->load) {
1236: (*ts->ops->load)(ts,viewer);
1237: }
1238: DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1239: DMLoad(dm,viewer);
1240: TSSetDM(ts,dm);
1241: DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1242: VecLoad(ts->vec_sol,viewer);
1243: DMGetDMTS(ts->dm,&sdm);
1244: DMTSLoad(sdm,viewer);
1245: return(0);
1246: }
1248: #include <petscdraw.h>
1249: #if defined(PETSC_HAVE_AMS)
1250: #include <petscviewerams.h>
1251: #endif
1254: /*@C
1255: TSView - Prints the TS data structure.
1257: Collective on TS
1259: Input Parameters:
1260: + ts - the TS context obtained from TSCreate()
1261: - viewer - visualization context
1263: Options Database Key:
1264: . -ts_view - calls TSView() at end of TSStep()
1266: Notes:
1267: The available visualization contexts include
1268: + PETSC_VIEWER_STDOUT_SELF - standard output (default)
1269: - PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1270: output where only the first processor opens
1271: the file. All other processors send their
1272: data to the first processor to print.
1274: The user can open an alternative visualization context with
1275: PetscViewerASCIIOpen() - output to a specified file.
1277: Level: beginner
1279: .keywords: TS, timestep, view
1281: .seealso: PetscViewerASCIIOpen()
1282: @*/
1283: PetscErrorCode TSView(TS ts,PetscViewer viewer)
1284: {
1286: TSType type;
1287: PetscBool iascii,isstring,isundials,isbinary,isdraw;
1288: DMTS sdm;
1289: #if defined(PETSC_HAVE_AMS)
1290: PetscBool isams;
1291: #endif
1295: if (!viewer) {
1296: PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1297: }
1301: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1302: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1303: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1304: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1305: #if defined(PETSC_HAVE_AMS)
1306: PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERAMS,&isams);
1307: #endif
1308: if (iascii) {
1309: PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer,"TS Object");
1310: PetscViewerASCIIPrintf(viewer," maximum steps=%D\n",ts->max_steps);
1311: PetscViewerASCIIPrintf(viewer," maximum time=%G\n",ts->max_time);
1312: if (ts->problem_type == TS_NONLINEAR) {
1313: PetscViewerASCIIPrintf(viewer," total number of nonlinear solver iterations=%D\n",ts->snes_its);
1314: PetscViewerASCIIPrintf(viewer," total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1315: }
1316: PetscViewerASCIIPrintf(viewer," total number of linear solver iterations=%D\n",ts->ksp_its);
1317: PetscViewerASCIIPrintf(viewer," total number of rejected steps=%D\n",ts->reject);
1318: DMGetDMTS(ts->dm,&sdm);
1319: DMTSView(sdm,viewer);
1320: if (ts->ops->view) {
1321: PetscViewerASCIIPushTab(viewer);
1322: (*ts->ops->view)(ts,viewer);
1323: PetscViewerASCIIPopTab(viewer);
1324: }
1325: } else if (isstring) {
1326: TSGetType(ts,&type);
1327: PetscViewerStringSPrintf(viewer," %-7.7s",type);
1328: } else if (isbinary) {
1329: PetscInt classid = TS_FILE_CLASSID;
1330: MPI_Comm comm;
1331: PetscMPIInt rank;
1332: char type[256];
1334: PetscObjectGetComm((PetscObject)ts,&comm);
1335: MPI_Comm_rank(comm,&rank);
1336: if (!rank) {
1337: PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1338: PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1339: PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1340: }
1341: if (ts->ops->view) {
1342: (*ts->ops->view)(ts,viewer);
1343: }
1344: DMView(ts->dm,viewer);
1345: VecView(ts->vec_sol,viewer);
1346: DMGetDMTS(ts->dm,&sdm);
1347: DMTSView(sdm,viewer);
1348: } else if (isdraw) {
1349: PetscDraw draw;
1350: char str[36];
1351: PetscReal x,y,bottom,h;
1353: PetscViewerDrawGetDraw(viewer,0,&draw);
1354: PetscDrawGetCurrentPoint(draw,&x,&y);
1355: PetscStrcpy(str,"TS: ");
1356: PetscStrcat(str,((PetscObject)ts)->type_name);
1357: PetscDrawBoxedString(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1358: bottom = y - h;
1359: PetscDrawPushCurrentPoint(draw,x,bottom);
1360: if (ts->ops->view) {
1361: (*ts->ops->view)(ts,viewer);
1362: }
1363: PetscDrawPopCurrentPoint(draw);
1364: #if defined(PETSC_HAVE_AMS)
1365: } else if (isams) {
1366: if (((PetscObject)ts)->amsmem == -1) {
1367: PetscObjectViewAMS((PetscObject)ts,viewer);
1368: PetscStackCallAMS(AMS_Memory_take_access,(((PetscObject)ts)->amsmem));
1369: PetscStackCallAMS(AMS_Memory_add_field,(((PetscObject)ts)->amsmem,"time step",&ts->steps,1,AMS_INT,AMS_READ,AMS_COMMON,AMS_REDUCT_UNDEF));
1370: PetscStackCallAMS(AMS_Memory_add_field,(((PetscObject)ts)->amsmem,"time",&ts->ptime,1,AMS_DOUBLE,AMS_READ,AMS_COMMON,AMS_REDUCT_UNDEF));
1371: PetscStackCallAMS(AMS_Memory_grant_access,(((PetscObject)ts)->amsmem));
1372: }
1373: if (ts->ops->view) {
1374: (*ts->ops->view)(ts,viewer);
1375: }
1376: #endif
1377: }
1379: PetscViewerASCIIPushTab(viewer);
1380: PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1381: PetscViewerASCIIPopTab(viewer);
1382: return(0);
1383: }
1388: /*@
1389: TSSetApplicationContext - Sets an optional user-defined context for
1390: the timesteppers.
1392: Logically Collective on TS
1394: Input Parameters:
1395: + ts - the TS context obtained from TSCreate()
1396: - usrP - optional user context
1398: Level: intermediate
1400: .keywords: TS, timestep, set, application, context
1402: .seealso: TSGetApplicationContext()
1403: @*/
1404: PetscErrorCode TSSetApplicationContext(TS ts,void *usrP)
1405: {
1408: ts->user = usrP;
1409: return(0);
1410: }
1414: /*@
1415: TSGetApplicationContext - Gets the user-defined context for the
1416: timestepper.
1418: Not Collective
1420: Input Parameter:
1421: . ts - the TS context obtained from TSCreate()
1423: Output Parameter:
1424: . usrP - user context
1426: Level: intermediate
1428: .keywords: TS, timestep, get, application, context
1430: .seealso: TSSetApplicationContext()
1431: @*/
1432: PetscErrorCode TSGetApplicationContext(TS ts,void *usrP)
1433: {
1436: *(void**)usrP = ts->user;
1437: return(0);
1438: }
1442: /*@
1443: TSGetTimeStepNumber - Gets the number of time steps completed.
1445: Not Collective
1447: Input Parameter:
1448: . ts - the TS context obtained from TSCreate()
1450: Output Parameter:
1451: . iter - number of steps completed so far
1453: Level: intermediate
1455: .keywords: TS, timestep, get, iteration, number
1456: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStep()
1457: @*/
1458: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *iter)
1459: {
1463: *iter = ts->steps;
1464: return(0);
1465: }
1469: /*@
1470: TSSetInitialTimeStep - Sets the initial timestep to be used,
1471: as well as the initial time.
1473: Logically Collective on TS
1475: Input Parameters:
1476: + ts - the TS context obtained from TSCreate()
1477: . initial_time - the initial time
1478: - time_step - the size of the timestep
1480: Level: intermediate
1482: .seealso: TSSetTimeStep(), TSGetTimeStep()
1484: .keywords: TS, set, initial, timestep
1485: @*/
1486: PetscErrorCode TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
1487: {
1492: TSSetTimeStep(ts,time_step);
1493: TSSetTime(ts,initial_time);
1494: return(0);
1495: }
1499: /*@
1500: TSSetTimeStep - Allows one to reset the timestep at any time,
1501: useful for simple pseudo-timestepping codes.
1503: Logically Collective on TS
1505: Input Parameters:
1506: + ts - the TS context obtained from TSCreate()
1507: - time_step - the size of the timestep
1509: Level: intermediate
1511: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1513: .keywords: TS, set, timestep
1514: @*/
1515: PetscErrorCode TSSetTimeStep(TS ts,PetscReal time_step)
1516: {
1520: ts->time_step = time_step;
1521: ts->time_step_orig = time_step;
1522: return(0);
1523: }
1527: /*@
1528: TSSetExactFinalTime - Determines whether to adapt the final time step to
1529: match the exact final time, interpolate solution to the exact final time,
1530: or just return at the final time TS computed.
1532: Logically Collective on TS
1534: Input Parameter:
1535: + ts - the time-step context
1536: - eftopt - exact final time option
1538: Level: beginner
1540: .seealso: TSExactFinalTimeOption
1541: @*/
1542: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
1543: {
1547: ts->exact_final_time = eftopt;
1548: return(0);
1549: }
1553: /*@
1554: TSGetTimeStep - Gets the current timestep size.
1556: Not Collective
1558: Input Parameter:
1559: . ts - the TS context obtained from TSCreate()
1561: Output Parameter:
1562: . dt - the current timestep size
1564: Level: intermediate
1566: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
1568: .keywords: TS, get, timestep
1569: @*/
1570: PetscErrorCode TSGetTimeStep(TS ts,PetscReal *dt)
1571: {
1575: *dt = ts->time_step;
1576: return(0);
1577: }
1581: /*@
1582: TSGetSolution - Returns the solution at the present timestep. It
1583: is valid to call this routine inside the function that you are evaluating
1584: in order to move to the new timestep. This vector not changed until
1585: the solution at the next timestep has been calculated.
1587: Not Collective, but Vec returned is parallel if TS is parallel
1589: Input Parameter:
1590: . ts - the TS context obtained from TSCreate()
1592: Output Parameter:
1593: . v - the vector containing the solution
1595: Level: intermediate
1597: .seealso: TSGetTimeStep()
1599: .keywords: TS, timestep, get, solution
1600: @*/
1601: PetscErrorCode TSGetSolution(TS ts,Vec *v)
1602: {
1606: *v = ts->vec_sol;
1607: return(0);
1608: }
1610: /* ----- Routines to initialize and destroy a timestepper ---- */
1613: /*@
1614: TSSetProblemType - Sets the type of problem to be solved.
1616: Not collective
1618: Input Parameters:
1619: + ts - The TS
1620: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1621: .vb
1622: U_t - A U = 0 (linear)
1623: U_t - A(t) U = 0 (linear)
1624: F(t,U,U_t) = 0 (nonlinear)
1625: .ve
1627: Level: beginner
1629: .keywords: TS, problem type
1630: .seealso: TSSetUp(), TSProblemType, TS
1631: @*/
1632: PetscErrorCode TSSetProblemType(TS ts, TSProblemType type)
1633: {
1638: ts->problem_type = type;
1639: if (type == TS_LINEAR) {
1640: SNES snes;
1641: TSGetSNES(ts,&snes);
1642: SNESSetType(snes,SNESKSPONLY);
1643: }
1644: return(0);
1645: }
1649: /*@C
1650: TSGetProblemType - Gets the type of problem to be solved.
1652: Not collective
1654: Input Parameter:
1655: . ts - The TS
1657: Output Parameter:
1658: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1659: .vb
1660: M U_t = A U
1661: M(t) U_t = A(t) U
1662: F(t,U,U_t)
1663: .ve
1665: Level: beginner
1667: .keywords: TS, problem type
1668: .seealso: TSSetUp(), TSProblemType, TS
1669: @*/
1670: PetscErrorCode TSGetProblemType(TS ts, TSProblemType *type)
1671: {
1675: *type = ts->problem_type;
1676: return(0);
1677: }
1681: /*@
1682: TSSetUp - Sets up the internal data structures for the later use
1683: of a timestepper.
1685: Collective on TS
1687: Input Parameter:
1688: . ts - the TS context obtained from TSCreate()
1690: Notes:
1691: For basic use of the TS solvers the user need not explicitly call
1692: TSSetUp(), since these actions will automatically occur during
1693: the call to TSStep(). However, if one wishes to control this
1694: phase separately, TSSetUp() should be called after TSCreate()
1695: and optional routines of the form TSSetXXX(), but before TSStep().
1697: Level: advanced
1699: .keywords: TS, timestep, setup
1701: .seealso: TSCreate(), TSStep(), TSDestroy()
1702: @*/
1703: PetscErrorCode TSSetUp(TS ts)
1704: {
1706: DM dm;
1707: PetscErrorCode (*func)(SNES,Vec,Vec,void*);
1708: PetscErrorCode (*jac)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
1709: TSIJacobian ijac;
1710: TSRHSJacobian rhsjac;
1714: if (ts->setupcalled) return(0);
1716: if (!((PetscObject)ts)->type_name) {
1717: TSSetType(ts,TSEULER);
1718: }
1720: if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
1722: TSGetAdapt(ts,&ts->adapt);
1724: if (ts->ops->setup) {
1725: (*ts->ops->setup)(ts);
1726: }
1728: /* in the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
1729: to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
1730: */
1731: TSGetDM(ts,&dm);
1732: DMSNESGetFunction(dm,&func,NULL);
1733: if (!func) {
1734: ierr =DMSNESSetFunction(dm,SNESTSFormFunction,ts);
1735: }
1736: /* if the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
1737: Otherwise, the SNES will use coloring internally to form the Jacobian.
1738: */
1739: DMSNESGetJacobian(dm,&jac,NULL);
1740: DMTSGetIJacobian(dm,&ijac,NULL);
1741: DMTSGetRHSJacobian(dm,&rhsjac,NULL);
1742: if (!jac && (ijac || rhsjac)) {
1743: DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
1744: }
1745: ts->setupcalled = PETSC_TRUE;
1746: return(0);
1747: }
1751: /*@
1752: TSReset - Resets a TS context and removes any allocated Vecs and Mats.
1754: Collective on TS
1756: Input Parameter:
1757: . ts - the TS context obtained from TSCreate()
1759: Level: beginner
1761: .keywords: TS, timestep, reset
1763: .seealso: TSCreate(), TSSetup(), TSDestroy()
1764: @*/
1765: PetscErrorCode TSReset(TS ts)
1766: {
1771: if (ts->ops->reset) {
1772: (*ts->ops->reset)(ts);
1773: }
1774: if (ts->snes) {SNESReset(ts->snes);}
1776: MatDestroy(&ts->Arhs);
1777: MatDestroy(&ts->Brhs);
1778: VecDestroy(&ts->Frhs);
1779: VecDestroy(&ts->vec_sol);
1780: VecDestroy(&ts->vatol);
1781: VecDestroy(&ts->vrtol);
1782: VecDestroyVecs(ts->nwork,&ts->work);
1784: ts->setupcalled = PETSC_FALSE;
1785: return(0);
1786: }
1790: /*@
1791: TSDestroy - Destroys the timestepper context that was created
1792: with TSCreate().
1794: Collective on TS
1796: Input Parameter:
1797: . ts - the TS context obtained from TSCreate()
1799: Level: beginner
1801: .keywords: TS, timestepper, destroy
1803: .seealso: TSCreate(), TSSetUp(), TSSolve()
1804: @*/
1805: PetscErrorCode TSDestroy(TS *ts)
1806: {
1810: if (!*ts) return(0);
1812: if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}
1814: TSReset((*ts));
1816: /* if memory was published with AMS then destroy it */
1817: PetscObjectAMSViewOff((PetscObject)*ts);
1818: if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}
1820: TSAdaptDestroy(&(*ts)->adapt);
1821: SNESDestroy(&(*ts)->snes);
1822: DMDestroy(&(*ts)->dm);
1823: TSMonitorCancel((*ts));
1825: PetscHeaderDestroy(ts);
1826: return(0);
1827: }
1831: /*@
1832: TSGetSNES - Returns the SNES (nonlinear solver) associated with
1833: a TS (timestepper) context. Valid only for nonlinear problems.
1835: Not Collective, but SNES is parallel if TS is parallel
1837: Input Parameter:
1838: . ts - the TS context obtained from TSCreate()
1840: Output Parameter:
1841: . snes - the nonlinear solver context
1843: Notes:
1844: The user can then directly manipulate the SNES context to set various
1845: options, etc. Likewise, the user can then extract and manipulate the
1846: KSP, KSP, and PC contexts as well.
1848: TSGetSNES() does not work for integrators that do not use SNES; in
1849: this case TSGetSNES() returns NULL in snes.
1851: Level: beginner
1853: .keywords: timestep, get, SNES
1854: @*/
1855: PetscErrorCode TSGetSNES(TS ts,SNES *snes)
1856: {
1862: if (!ts->snes) {
1863: SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
1864: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
1865: PetscLogObjectParent(ts,ts->snes);
1866: PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
1867: if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
1868: if (ts->problem_type == TS_LINEAR) {
1869: SNESSetType(ts->snes,SNESKSPONLY);
1870: }
1871: }
1872: *snes = ts->snes;
1873: return(0);
1874: }
1878: /*@
1879: TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context
1881: Collective
1883: Input Parameter:
1884: + ts - the TS context obtained from TSCreate()
1885: - snes - the nonlinear solver context
1887: Notes:
1888: Most users should have the TS created by calling TSGetSNES()
1890: Level: developer
1892: .keywords: timestep, set, SNES
1893: @*/
1894: PetscErrorCode TSSetSNES(TS ts,SNES snes)
1895: {
1897: PetscErrorCode (*func)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
1902: PetscObjectReference((PetscObject)snes);
1903: SNESDestroy(&ts->snes);
1905: ts->snes = snes;
1907: SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
1908: SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
1909: if (func == SNESTSFormJacobian) {
1910: SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
1911: }
1912: return(0);
1913: }
1917: /*@
1918: TSGetKSP - Returns the KSP (linear solver) associated with
1919: a TS (timestepper) context.
1921: Not Collective, but KSP is parallel if TS is parallel
1923: Input Parameter:
1924: . ts - the TS context obtained from TSCreate()
1926: Output Parameter:
1927: . ksp - the nonlinear solver context
1929: Notes:
1930: The user can then directly manipulate the KSP context to set various
1931: options, etc. Likewise, the user can then extract and manipulate the
1932: KSP and PC contexts as well.
1934: TSGetKSP() does not work for integrators that do not use KSP;
1935: in this case TSGetKSP() returns NULL in ksp.
1937: Level: beginner
1939: .keywords: timestep, get, KSP
1940: @*/
1941: PetscErrorCode TSGetKSP(TS ts,KSP *ksp)
1942: {
1944: SNES snes;
1949: if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
1950: if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
1951: TSGetSNES(ts,&snes);
1952: SNESGetKSP(snes,ksp);
1953: return(0);
1954: }
1956: /* ----------- Routines to set solver parameters ---------- */
1960: /*@
1961: TSGetDuration - Gets the maximum number of timesteps to use and
1962: maximum time for iteration.
1964: Not Collective
1966: Input Parameters:
1967: + ts - the TS context obtained from TSCreate()
1968: . maxsteps - maximum number of iterations to use, or NULL
1969: - maxtime - final time to iterate to, or NULL
1971: Level: intermediate
1973: .keywords: TS, timestep, get, maximum, iterations, time
1974: @*/
1975: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
1976: {
1979: if (maxsteps) {
1981: *maxsteps = ts->max_steps;
1982: }
1983: if (maxtime) {
1985: *maxtime = ts->max_time;
1986: }
1987: return(0);
1988: }
1992: /*@
1993: TSSetDuration - Sets the maximum number of timesteps to use and
1994: maximum time for iteration.
1996: Logically Collective on TS
1998: Input Parameters:
1999: + ts - the TS context obtained from TSCreate()
2000: . maxsteps - maximum number of iterations to use
2001: - maxtime - final time to iterate to
2003: Options Database Keys:
2004: . -ts_max_steps <maxsteps> - Sets maxsteps
2005: . -ts_final_time <maxtime> - Sets maxtime
2007: Notes:
2008: The default maximum number of iterations is 5000. Default time is 5.0
2010: Level: intermediate
2012: .keywords: TS, timestep, set, maximum, iterations
2014: .seealso: TSSetExactFinalTime()
2015: @*/
2016: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2017: {
2022: if (maxsteps >= 0) ts->max_steps = maxsteps;
2023: if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2024: return(0);
2025: }
2029: /*@
2030: TSSetSolution - Sets the initial solution vector
2031: for use by the TS routines.
2033: Logically Collective on TS and Vec
2035: Input Parameters:
2036: + ts - the TS context obtained from TSCreate()
2037: - u - the solution vector
2039: Level: beginner
2041: .keywords: TS, timestep, set, solution, initial conditions
2042: @*/
2043: PetscErrorCode TSSetSolution(TS ts,Vec u)
2044: {
2046: DM dm;
2051: PetscObjectReference((PetscObject)u);
2052: VecDestroy(&ts->vec_sol);
2054: ts->vec_sol = u;
2056: TSGetDM(ts,&dm);
2057: DMShellSetGlobalVector(dm,u);
2058: return(0);
2059: }
2063: /*@C
2064: TSSetPreStep - Sets the general-purpose function
2065: called once at the beginning of each time step.
2067: Logically Collective on TS
2069: Input Parameters:
2070: + ts - The TS context obtained from TSCreate()
2071: - func - The function
2073: Calling sequence of func:
2074: . func (TS ts);
2076: Level: intermediate
2078: Note:
2079: If a step is rejected, TSStep() will call this routine again before each attempt.
2080: The last completed time step number can be queried using TSGetTimeStepNumber(), the
2081: size of the step being attempted can be obtained using TSGetTimeStep().
2083: .keywords: TS, timestep
2084: .seealso: TSSetPreStage(), TSSetPostStep(), TSStep()
2085: @*/
2086: PetscErrorCode TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
2087: {
2090: ts->prestep = func;
2091: return(0);
2092: }
2096: /*@
2097: TSPreStep - Runs the user-defined pre-step function.
2099: Collective on TS
2101: Input Parameters:
2102: . ts - The TS context obtained from TSCreate()
2104: Notes:
2105: TSPreStep() is typically used within time stepping implementations,
2106: so most users would not generally call this routine themselves.
2108: Level: developer
2110: .keywords: TS, timestep
2111: .seealso: TSSetPreStep(), TSPreStage(), TSPostStep()
2112: @*/
2113: PetscErrorCode TSPreStep(TS ts)
2114: {
2119: if (ts->prestep) {
2120: PetscStackCallStandard((*ts->prestep),(ts));
2121: }
2122: return(0);
2123: }
2127: /*@C
2128: TSSetPreStage - Sets the general-purpose function
2129: called once at the beginning of each stage.
2131: Logically Collective on TS
2133: Input Parameters:
2134: + ts - The TS context obtained from TSCreate()
2135: - func - The function
2137: Calling sequence of func:
2138: . PetscErrorCode func(TS ts, PetscReal stagetime);
2140: Level: intermediate
2142: Note:
2143: There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
2144: The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
2145: attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().
2147: .keywords: TS, timestep
2148: .seealso: TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
2149: @*/
2150: PetscErrorCode TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
2151: {
2154: ts->prestage = func;
2155: return(0);
2156: }
2160: /*@
2161: TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()
2163: Collective on TS
2165: Input Parameters:
2166: . ts - The TS context obtained from TSCreate()
2168: Notes:
2169: TSPreStage() is typically used within time stepping implementations,
2170: most users would not generally call this routine themselves.
2172: Level: developer
2174: .keywords: TS, timestep
2175: .seealso: TSSetPreStep(), TSPreStep(), TSPostStep()
2176: @*/
2177: PetscErrorCode TSPreStage(TS ts, PetscReal stagetime)
2178: {
2183: if (ts->prestage) {
2184: PetscStackCallStandard((*ts->prestage),(ts,stagetime));
2185: }
2186: return(0);
2187: }
2191: /*@C
2192: TSSetPostStep - Sets the general-purpose function
2193: called once at the end of each time step.
2195: Logically Collective on TS
2197: Input Parameters:
2198: + ts - The TS context obtained from TSCreate()
2199: - func - The function
2201: Calling sequence of func:
2202: $ func (TS ts);
2204: Level: intermediate
2206: .keywords: TS, timestep
2207: .seealso: TSSetPreStep(), TSSetPreStage(), TSGetTimeStep(), TSGetTimeStepNumber(), TSGetTime()
2208: @*/
2209: PetscErrorCode TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
2210: {
2213: ts->poststep = func;
2214: return(0);
2215: }
2219: /*@
2220: TSPostStep - Runs the user-defined post-step function.
2222: Collective on TS
2224: Input Parameters:
2225: . ts - The TS context obtained from TSCreate()
2227: Notes:
2228: TSPostStep() is typically used within time stepping implementations,
2229: so most users would not generally call this routine themselves.
2231: Level: developer
2233: .keywords: TS, timestep
2234: @*/
2235: PetscErrorCode TSPostStep(TS ts)
2236: {
2241: if (ts->poststep) {
2242: PetscStackCallStandard((*ts->poststep),(ts));
2243: }
2244: return(0);
2245: }
2247: /* ------------ Routines to set performance monitoring options ----------- */
2251: /*@C
2252: TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
2253: timestep to display the iteration's progress.
2255: Logically Collective on TS
2257: Input Parameters:
2258: + ts - the TS context obtained from TSCreate()
2259: . monitor - monitoring routine
2260: . mctx - [optional] user-defined context for private data for the
2261: monitor routine (use NULL if no context is desired)
2262: - monitordestroy - [optional] routine that frees monitor context
2263: (may be NULL)
2265: Calling sequence of monitor:
2266: $ int monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)
2268: + ts - the TS context
2269: . steps - iteration number (after the final time step the monitor routine is called with a step of -1, this is at the final time which may have
2270: been interpolated to)
2271: . time - current time
2272: . u - current iterate
2273: - mctx - [optional] monitoring context
2275: Notes:
2276: This routine adds an additional monitor to the list of monitors that
2277: already has been loaded.
2279: Fortran notes: Only a single monitor function can be set for each TS object
2281: Level: intermediate
2283: .keywords: TS, timestep, set, monitor
2285: .seealso: TSMonitorDefault(), TSMonitorCancel()
2286: @*/
2287: PetscErrorCode TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
2288: {
2291: if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
2292: ts->monitor[ts->numbermonitors] = monitor;
2293: ts->monitordestroy[ts->numbermonitors] = mdestroy;
2294: ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
2295: return(0);
2296: }
2300: /*@C
2301: TSMonitorCancel - Clears all the monitors that have been set on a time-step object.
2303: Logically Collective on TS
2305: Input Parameters:
2306: . ts - the TS context obtained from TSCreate()
2308: Notes:
2309: There is no way to remove a single, specific monitor.
2311: Level: intermediate
2313: .keywords: TS, timestep, set, monitor
2315: .seealso: TSMonitorDefault(), TSMonitorSet()
2316: @*/
2317: PetscErrorCode TSMonitorCancel(TS ts)
2318: {
2320: PetscInt i;
2324: for (i=0; i<ts->numbermonitors; i++) {
2325: if (ts->monitordestroy[i]) {
2326: (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
2327: }
2328: }
2329: ts->numbermonitors = 0;
2330: return(0);
2331: }
2335: /*@
2336: TSMonitorDefault - Sets the Default monitor
2338: Level: intermediate
2340: .keywords: TS, set, monitor
2342: .seealso: TSMonitorDefault(), TSMonitorSet()
2343: @*/
2344: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,void *dummy)
2345: {
2347: PetscViewer viewer = dummy ? (PetscViewer) dummy : PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)ts));
2350: PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
2351: PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g\n",step,(double)ts->time_step,(double)ptime);
2352: PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
2353: return(0);
2354: }
2358: /*@
2359: TSSetRetainStages - Request that all stages in the upcoming step be stored so that interpolation will be available.
2361: Logically Collective on TS
2363: Input Argument:
2364: . ts - time stepping context
2366: Output Argument:
2367: . flg - PETSC_TRUE or PETSC_FALSE
2369: Level: intermediate
2371: .keywords: TS, set
2373: .seealso: TSInterpolate(), TSSetPostStep()
2374: @*/
2375: PetscErrorCode TSSetRetainStages(TS ts,PetscBool flg)
2376: {
2379: ts->retain_stages = flg;
2380: return(0);
2381: }
2385: /*@
2386: TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval
2388: Collective on TS
2390: Input Argument:
2391: + ts - time stepping context
2392: - t - time to interpolate to
2394: Output Argument:
2395: . U - state at given time
2397: Notes:
2398: The user should call TSSetRetainStages() before taking a step in which interpolation will be requested.
2400: Level: intermediate
2402: Developer Notes:
2403: TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.
2405: .keywords: TS, set
2407: .seealso: TSSetRetainStages(), TSSetPostStep()
2408: @*/
2409: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
2410: {
2416: if (t < ts->ptime - ts->time_step_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %G not in last time steps [%G,%G]",t,ts->ptime-ts->time_step_prev,ts->ptime);
2417: if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
2418: (*ts->ops->interpolate)(ts,t,U);
2419: return(0);
2420: }
2424: /*@
2425: TSStep - Steps one time step
2427: Collective on TS
2429: Input Parameter:
2430: . ts - the TS context obtained from TSCreate()
2432: Level: intermediate
2434: Notes:
2435: The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
2436: be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.
2438: This may over-step the final time provided in TSSetDuration() depending on the time-step used. TSSolve() interpolates to exactly the
2439: time provided in TSSetDuration(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.
2441: .keywords: TS, timestep, solve
2443: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
2444: @*/
2445: PetscErrorCode TSStep(TS ts)
2446: {
2447: PetscReal ptime_prev;
2452: TSSetUp(ts);
2454: ts->reason = TS_CONVERGED_ITERATING;
2455: ptime_prev = ts->ptime;
2457: PetscLogEventBegin(TS_Step,ts,0,0,0);
2458: (*ts->ops->step)(ts);
2459: PetscLogEventEnd(TS_Step,ts,0,0,0);
2461: ts->time_step_prev = ts->ptime - ptime_prev;
2463: if (ts->reason < 0) {
2464: if (ts->errorifstepfailed) {
2465: if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) {
2466: SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
2467: } else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
2468: }
2469: } else if (!ts->reason) {
2470: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
2471: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2472: }
2473: return(0);
2474: }
2478: /*@
2479: TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.
2481: Collective on TS
2483: Input Arguments:
2484: + ts - time stepping context
2485: . order - desired order of accuracy
2486: - done - whether the step was evaluated at this order (pass NULL to generate an error if not available)
2488: Output Arguments:
2489: . U - state at the end of the current step
2491: Level: advanced
2493: Notes:
2494: This function cannot be called until all stages have been evaluated.
2495: It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.
2497: .seealso: TSStep(), TSAdapt
2498: @*/
2499: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
2500: {
2507: if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
2508: (*ts->ops->evaluatestep)(ts,order,U,done);
2509: return(0);
2510: }
2514: /*@
2515: TSSolve - Steps the requested number of timesteps.
2517: Collective on TS
2519: Input Parameter:
2520: + ts - the TS context obtained from TSCreate()
2521: - u - the solution vector (can be null if TSSetSolution() was used, otherwise must contain the initial conditions)
2523: Level: beginner
2525: Notes:
2526: The final time returned by this function may be different from the time of the internally
2527: held state accessible by TSGetSolution() and TSGetTime() because the method may have
2528: stepped over the final time.
2530: .keywords: TS, timestep, solve
2532: .seealso: TSCreate(), TSSetSolution(), TSStep()
2533: @*/
2534: PetscErrorCode TSSolve(TS ts,Vec u)
2535: {
2536: PetscBool flg;
2537: PetscViewer viewer;
2538: Vec solution;
2539: PetscErrorCode ierr;
2540: PetscViewerFormat format;
2545: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE) { /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
2547: if (!ts->vec_sol || u == ts->vec_sol) {
2548: VecDuplicate(u,&solution);
2549: TSSetSolution(ts,solution);
2550: VecDestroy(&solution); /* grant ownership */
2551: }
2552: VecCopy(u,ts->vec_sol);
2553: } else if (u) {
2554: TSSetSolution(ts,u);
2555: }
2556: TSSetUp(ts);
2557: /* reset time step and iteration counters */
2558: ts->steps = 0;
2559: ts->ksp_its = 0;
2560: ts->snes_its = 0;
2561: ts->num_snes_failures = 0;
2562: ts->reject = 0;
2563: ts->reason = TS_CONVERGED_ITERATING;
2565: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,"-ts_view_pre",&viewer,&format,&flg);
2566: if (flg && !PetscPreLoadingOn) {
2567: PetscViewerPushFormat(viewer,format);
2568: TSView(ts,viewer);
2569: PetscViewerPopFormat(viewer);
2570: PetscViewerDestroy(&viewer);
2571: }
2573: if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
2574: (*ts->ops->solve)(ts);
2575: VecCopy(ts->vec_sol,u);
2576: ts->solvetime = ts->ptime;
2577: } else {
2578: /* steps the requested number of timesteps. */
2579: if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
2580: else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2581: while (!ts->reason) {
2582: TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
2583: TSStep(ts);
2584: TSPostStep(ts);
2585: }
2586: if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
2587: TSInterpolate(ts,ts->max_time,u);
2588: ts->solvetime = ts->max_time;
2589: solution = u;
2590: } else {
2591: if (u) {VecCopy(ts->vec_sol,u);}
2592: ts->solvetime = ts->ptime;
2593: solution = ts->vec_sol;
2594: }
2595: TSMonitor(ts,ts->steps,ts->solvetime,solution);
2596: }
2597: PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,"-ts_view",&viewer,&format,&flg);
2598: if (flg && !PetscPreLoadingOn) {
2599: PetscViewerPushFormat(viewer,format);
2600: TSView(ts,viewer);
2601: PetscViewerPopFormat(viewer);
2602: PetscViewerDestroy(&viewer);
2603: }
2604: return(0);
2605: }
2609: /*@
2610: TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()
2612: Collective on TS
2614: Input Parameters:
2615: + ts - time stepping context obtained from TSCreate()
2616: . step - step number that has just completed
2617: . ptime - model time of the state
2618: - u - state at the current model time
2620: Notes:
2621: TSMonitor() is typically used within the time stepping implementations.
2622: Users might call this function when using the TSStep() interface instead of TSSolve().
2624: Level: advanced
2626: .keywords: TS, timestep
2627: @*/
2628: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
2629: {
2631: PetscInt i,n = ts->numbermonitors;
2636: for (i=0; i<n; i++) {
2637: (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
2638: }
2639: return(0);
2640: }
2642: /* ------------------------------------------------------------------------*/
2643: struct _n_TSMonitorLGCtx {
2644: PetscDrawLG lg;
2645: PetscInt howoften; /* when > 0 uses step % howoften, when negative only final solution plotted */
2646: PetscInt ksp_its,snes_its;
2647: };
2652: /*@C
2653: TSMonitorLGCtxCreate - Creates a line graph context for use with
2654: TS to monitor the solution process graphically in various ways
2656: Collective on TS
2658: Input Parameters:
2659: + host - the X display to open, or null for the local machine
2660: . label - the title to put in the title bar
2661: . x, y - the screen coordinates of the upper left coordinate of the window
2662: . m, n - the screen width and height in pixels
2663: - howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time
2665: Output Parameter:
2666: . ctx - the context
2668: Options Database Key:
2669: + -ts_monitor_lg_timestep - automatically sets line graph monitor
2670: . -ts_monitor_lg_solution -
2671: . -ts_monitor_lg_error -
2672: . -ts_monitor_lg_ksp_iterations -
2673: . -ts_monitor_lg_snes_iterations -
2674: - -lg_indicate_data_points <true,false> - indicate the data points (at each time step) on the plot; default is true
2676: Notes:
2677: Use TSMonitorLGCtxDestroy() to destroy.
2679: Level: intermediate
2681: .keywords: TS, monitor, line graph, residual, seealso
2683: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()
2685: @*/
2686: PetscErrorCode TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
2687: {
2688: PetscDraw win;
2690: PetscBool flg = PETSC_TRUE;
2693: PetscNew(struct _n_TSMonitorLGCtx,ctx);
2694: PetscDrawCreate(comm,host,label,x,y,m,n,&win);
2695: PetscDrawSetFromOptions(win);
2696: PetscDrawLGCreate(win,1,&(*ctx)->lg);
2697: PetscOptionsGetBool(NULL,"-lg_indicate_data_points",&flg,NULL);
2698: if (flg) {
2699: PetscDrawLGIndicateDataPoints((*ctx)->lg);
2700: }
2701: PetscLogObjectParent((*ctx)->lg,win);
2702: (*ctx)->howoften = howoften;
2703: return(0);
2704: }
2708: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
2709: {
2710: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
2711: PetscReal x = ptime,y;
2715: if (!step) {
2716: PetscDrawAxis axis;
2717: PetscDrawLGGetAxis(ctx->lg,&axis);
2718: PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time","Time step");
2719: PetscDrawLGReset(ctx->lg);
2720: }
2721: TSGetTimeStep(ts,&y);
2722: PetscDrawLGAddPoint(ctx->lg,&x,&y);
2723: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
2724: PetscDrawLGDraw(ctx->lg);
2725: }
2726: return(0);
2727: }
2731: /*@C
2732: TSMonitorLGCtxDestroy - Destroys a line graph context that was created
2733: with TSMonitorLGCtxCreate().
2735: Collective on TSMonitorLGCtx
2737: Input Parameter:
2738: . ctx - the monitor context
2740: Level: intermediate
2742: .keywords: TS, monitor, line graph, destroy
2744: .seealso: TSMonitorLGCtxCreate(), TSMonitorSet(), TSMonitorLGTimeStep();
2745: @*/
2746: PetscErrorCode TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
2747: {
2748: PetscDraw draw;
2752: PetscDrawLGGetDraw((*ctx)->lg,&draw);
2753: PetscDrawDestroy(&draw);
2754: PetscDrawLGDestroy(&(*ctx)->lg);
2755: PetscFree(*ctx);
2756: return(0);
2757: }
2761: /*@
2762: TSGetTime - Gets the time of the most recently completed step.
2764: Not Collective
2766: Input Parameter:
2767: . ts - the TS context obtained from TSCreate()
2769: Output Parameter:
2770: . t - the current time
2772: Level: beginner
2774: Note:
2775: When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
2776: TSSetPreStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.
2778: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()
2780: .keywords: TS, get, time
2781: @*/
2782: PetscErrorCode TSGetTime(TS ts,PetscReal *t)
2783: {
2787: *t = ts->ptime;
2788: return(0);
2789: }
2793: /*@
2794: TSSetTime - Allows one to reset the time.
2796: Logically Collective on TS
2798: Input Parameters:
2799: + ts - the TS context obtained from TSCreate()
2800: - time - the time
2802: Level: intermediate
2804: .seealso: TSGetTime(), TSSetDuration()
2806: .keywords: TS, set, time
2807: @*/
2808: PetscErrorCode TSSetTime(TS ts, PetscReal t)
2809: {
2813: ts->ptime = t;
2814: return(0);
2815: }
2819: /*@C
2820: TSSetOptionsPrefix - Sets the prefix used for searching for all
2821: TS options in the database.
2823: Logically Collective on TS
2825: Input Parameter:
2826: + ts - The TS context
2827: - prefix - The prefix to prepend to all option names
2829: Notes:
2830: A hyphen (-) must NOT be given at the beginning of the prefix name.
2831: The first character of all runtime options is AUTOMATICALLY the
2832: hyphen.
2834: Level: advanced
2836: .keywords: TS, set, options, prefix, database
2838: .seealso: TSSetFromOptions()
2840: @*/
2841: PetscErrorCode TSSetOptionsPrefix(TS ts,const char prefix[])
2842: {
2844: SNES snes;
2848: PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
2849: TSGetSNES(ts,&snes);
2850: SNESSetOptionsPrefix(snes,prefix);
2851: return(0);
2852: }
2857: /*@C
2858: TSAppendOptionsPrefix - Appends to the prefix used for searching for all
2859: TS options in the database.
2861: Logically Collective on TS
2863: Input Parameter:
2864: + ts - The TS context
2865: - prefix - The prefix to prepend to all option names
2867: Notes:
2868: A hyphen (-) must NOT be given at the beginning of the prefix name.
2869: The first character of all runtime options is AUTOMATICALLY the
2870: hyphen.
2872: Level: advanced
2874: .keywords: TS, append, options, prefix, database
2876: .seealso: TSGetOptionsPrefix()
2878: @*/
2879: PetscErrorCode TSAppendOptionsPrefix(TS ts,const char prefix[])
2880: {
2882: SNES snes;
2886: PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
2887: TSGetSNES(ts,&snes);
2888: SNESAppendOptionsPrefix(snes,prefix);
2889: return(0);
2890: }
2894: /*@C
2895: TSGetOptionsPrefix - Sets the prefix used for searching for all
2896: TS options in the database.
2898: Not Collective
2900: Input Parameter:
2901: . ts - The TS context
2903: Output Parameter:
2904: . prefix - A pointer to the prefix string used
2906: Notes: On the fortran side, the user should pass in a string 'prifix' of
2907: sufficient length to hold the prefix.
2909: Level: intermediate
2911: .keywords: TS, get, options, prefix, database
2913: .seealso: TSAppendOptionsPrefix()
2914: @*/
2915: PetscErrorCode TSGetOptionsPrefix(TS ts,const char *prefix[])
2916: {
2922: PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
2923: return(0);
2924: }
2928: /*@C
2929: TSGetRHSJacobian - Returns the Jacobian J at the present timestep.
2931: Not Collective, but parallel objects are returned if TS is parallel
2933: Input Parameter:
2934: . ts - The TS context obtained from TSCreate()
2936: Output Parameters:
2937: + Amat - The (approximate) Jacobian J of G, where U_t = G(U,t) (or NULL)
2938: . Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat (or NULL)
2939: . func - Function to compute the Jacobian of the RHS (or NULL)
2940: - ctx - User-defined context for Jacobian evaluation routine (or NULL)
2942: Notes: You can pass in NULL for any return argument you do not need.
2944: Level: intermediate
2946: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
2948: .keywords: TS, timestep, get, matrix, Jacobian
2949: @*/
2950: PetscErrorCode TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
2951: {
2953: SNES snes;
2954: DM dm;
2957: TSGetSNES(ts,&snes);
2958: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
2959: TSGetDM(ts,&dm);
2960: DMTSGetRHSJacobian(dm,func,ctx);
2961: return(0);
2962: }
2966: /*@C
2967: TSGetIJacobian - Returns the implicit Jacobian at the present timestep.
2969: Not Collective, but parallel objects are returned if TS is parallel
2971: Input Parameter:
2972: . ts - The TS context obtained from TSCreate()
2974: Output Parameters:
2975: + Amat - The (approximate) Jacobian of F(t,U,U_t)
2976: . Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
2977: . f - The function to compute the matrices
2978: - ctx - User-defined context for Jacobian evaluation routine
2980: Notes: You can pass in NULL for any return argument you do not need.
2982: Level: advanced
2984: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()
2986: .keywords: TS, timestep, get, matrix, Jacobian
2987: @*/
2988: PetscErrorCode TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
2989: {
2991: SNES snes;
2992: DM dm;
2995: TSGetSNES(ts,&snes);
2996: SNESSetUpMatrices(snes);
2997: SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
2998: TSGetDM(ts,&dm);
2999: DMTSGetIJacobian(dm,f,ctx);
3000: return(0);
3001: }
3006: /*@C
3007: TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
3008: VecView() for the solution at each timestep
3010: Collective on TS
3012: Input Parameters:
3013: + ts - the TS context
3014: . step - current time-step
3015: . ptime - current time
3016: - dummy - either a viewer or NULL
3018: Options Database:
3019: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
3021: Notes: the initial solution and current solution are not displayed with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
3022: will look bad
3024: Level: intermediate
3026: .keywords: TS, vector, monitor, view
3028: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3029: @*/
3030: PetscErrorCode TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3031: {
3032: PetscErrorCode ierr;
3033: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3034: PetscDraw draw;
3037: if (!step && ictx->showinitial) {
3038: if (!ictx->initialsolution) {
3039: VecDuplicate(u,&ictx->initialsolution);
3040: }
3041: VecCopy(u,ictx->initialsolution);
3042: }
3043: if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);
3045: if (ictx->showinitial) {
3046: PetscReal pause;
3047: PetscViewerDrawGetPause(ictx->viewer,&pause);
3048: PetscViewerDrawSetPause(ictx->viewer,0.0);
3049: VecView(ictx->initialsolution,ictx->viewer);
3050: PetscViewerDrawSetPause(ictx->viewer,pause);
3051: PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
3052: }
3053: VecView(u,ictx->viewer);
3054: if (ictx->showtimestepandtime) {
3055: PetscReal xl,yl,xr,yr,tw,w,h;
3056: char time[32];
3057: size_t len;
3059: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3060: PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3061: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3062: PetscStrlen(time,&len);
3063: PetscDrawStringGetSize(draw,&tw,NULL);
3064: w = xl + .5*(xr - xl) - .5*len*tw;
3065: h = yl + .95*(yr - yl);
3066: PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3067: PetscDrawFlush(draw);
3068: }
3070: if (ictx->showinitial) {
3071: PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
3072: }
3073: return(0);
3074: }
3078: /*@C
3079: TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram
3081: Collective on TS
3083: Input Parameters:
3084: + ts - the TS context
3085: . step - current time-step
3086: . ptime - current time
3087: - dummy - either a viewer or NULL
3089: Level: intermediate
3091: .keywords: TS, vector, monitor, view
3093: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3094: @*/
3095: PetscErrorCode TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3096: {
3097: PetscErrorCode ierr;
3098: TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3099: PetscDraw draw;
3100: MPI_Comm comm;
3101: PetscInt n;
3102: PetscMPIInt size;
3103: PetscReal xl,yl,xr,yr,tw,w,h;
3104: char time[32];
3105: size_t len;
3106: const PetscScalar *U;
3109: PetscObjectGetComm((PetscObject)ts,&comm);
3110: MPI_Comm_size(comm,&size);
3111: if (size != 1) SETERRQ(comm,PETSC_ERR_SUP,"Only allowed for sequential runs");
3112: VecGetSize(u,&n);
3113: if (n != 2) SETERRQ(comm,PETSC_ERR_SUP,"Only for ODEs with two unknowns");
3115: PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3117: VecGetArrayRead(u,&U);
3118: PetscDrawAxisGetLimits(ictx->axis,&xl,&xr,&yl,&yr);
3119: if ((PetscRealPart(U[0]) < xl) || (PetscRealPart(U[1]) < yl) || (PetscRealPart(U[0]) > xr) || (PetscRealPart(U[1]) > yr)) {
3120: VecRestoreArrayRead(u,&U);
3121: return(0);
3122: }
3123: if (!step) ictx->color++;
3124: PetscDrawPoint(draw,PetscRealPart(U[0]),PetscRealPart(U[1]),ictx->color);
3125: VecRestoreArrayRead(u,&U);
3127: if (ictx->showtimestepandtime) {
3128: PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3129: PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3130: PetscStrlen(time,&len);
3131: PetscDrawStringGetSize(draw,&tw,NULL);
3132: w = xl + .5*(xr - xl) - .5*len*tw;
3133: h = yl + .95*(yr - yl);
3134: PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3135: }
3136: PetscDrawFlush(draw);
3137: return(0);
3138: }
3143: /*@C
3144: TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()
3146: Collective on TS
3148: Input Parameters:
3149: . ctx - the monitor context
3151: Level: intermediate
3153: .keywords: TS, vector, monitor, view
3155: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
3156: @*/
3157: PetscErrorCode TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
3158: {
3162: PetscDrawAxisDestroy(&(*ictx)->axis);
3163: PetscViewerDestroy(&(*ictx)->viewer);
3164: VecDestroy(&(*ictx)->initialsolution);
3165: PetscFree(*ictx);
3166: return(0);
3167: }
3171: /*@C
3172: TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx
3174: Collective on TS
3176: Input Parameter:
3177: . ts - time-step context
3179: Output Patameter:
3180: . ctx - the monitor context
3182: Options Database:
3183: . -ts_monitor_draw_solution_initial - show initial solution as well as current solution
3185: Level: intermediate
3187: .keywords: TS, vector, monitor, view
3189: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
3190: @*/
3191: PetscErrorCode TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
3192: {
3193: PetscErrorCode ierr;
3196: PetscNew(struct _n_TSMonitorDrawCtx,ctx);
3197: PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
3198: PetscViewerSetFromOptions((*ctx)->viewer);
3200: (*ctx)->howoften = howoften;
3201: (*ctx)->showinitial = PETSC_FALSE;
3202: PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);
3204: (*ctx)->showtimestepandtime = PETSC_FALSE;
3205: PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
3206: (*ctx)->color = PETSC_DRAW_WHITE;
3207: return(0);
3208: }
3212: /*@C
3213: TSMonitorDrawError - Monitors progress of the TS solvers by calling
3214: VecView() for the error at each timestep
3216: Collective on TS
3218: Input Parameters:
3219: + ts - the TS context
3220: . step - current time-step
3221: . ptime - current time
3222: - dummy - either a viewer or NULL
3224: Level: intermediate
3226: .keywords: TS, vector, monitor, view
3228: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3229: @*/
3230: PetscErrorCode TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3231: {
3232: PetscErrorCode ierr;
3233: TSMonitorDrawCtx ctx = (TSMonitorDrawCtx)dummy;
3234: PetscViewer viewer = ctx->viewer;
3235: Vec work;
3238: if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
3239: VecDuplicate(u,&work);
3240: TSComputeSolutionFunction(ts,ptime,work);
3241: VecAXPY(work,-1.0,u);
3242: VecView(work,viewer);
3243: VecDestroy(&work);
3244: return(0);
3245: }
3247: #include <petsc-private/dmimpl.h>
3250: /*@
3251: TSSetDM - Sets the DM that may be used by some preconditioners
3253: Logically Collective on TS and DM
3255: Input Parameters:
3256: + ts - the preconditioner context
3257: - dm - the dm
3259: Level: intermediate
3262: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
3263: @*/
3264: PetscErrorCode TSSetDM(TS ts,DM dm)
3265: {
3267: SNES snes;
3268: DMTS tsdm;
3272: PetscObjectReference((PetscObject)dm);
3273: if (ts->dm) { /* Move the DMTS context over to the new DM unless the new DM already has one */
3274: if (ts->dm->dmts && !dm->dmts) {
3275: DMCopyDMTS(ts->dm,dm);
3276: DMGetDMTS(ts->dm,&tsdm);
3277: if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
3278: tsdm->originaldm = dm;
3279: }
3280: }
3281: DMDestroy(&ts->dm);
3282: }
3283: ts->dm = dm;
3285: TSGetSNES(ts,&snes);
3286: SNESSetDM(snes,dm);
3287: return(0);
3288: }
3292: /*@
3293: TSGetDM - Gets the DM that may be used by some preconditioners
3295: Not Collective
3297: Input Parameter:
3298: . ts - the preconditioner context
3300: Output Parameter:
3301: . dm - the dm
3303: Level: intermediate
3306: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
3307: @*/
3308: PetscErrorCode TSGetDM(TS ts,DM *dm)
3309: {
3314: if (!ts->dm) {
3315: DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
3316: if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
3317: }
3318: *dm = ts->dm;
3319: return(0);
3320: }
3324: /*@
3325: SNESTSFormFunction - Function to evaluate nonlinear residual
3327: Logically Collective on SNES
3329: Input Parameter:
3330: + snes - nonlinear solver
3331: . U - the current state at which to evaluate the residual
3332: - ctx - user context, must be a TS
3334: Output Parameter:
3335: . F - the nonlinear residual
3337: Notes:
3338: This function is not normally called by users and is automatically registered with the SNES used by TS.
3339: It is most frequently passed to MatFDColoringSetFunction().
3341: Level: advanced
3343: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
3344: @*/
3345: PetscErrorCode SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
3346: {
3347: TS ts = (TS)ctx;
3355: (ts->ops->snesfunction)(snes,U,F,ts);
3356: return(0);
3357: }
3361: /*@
3362: SNESTSFormJacobian - Function to evaluate the Jacobian
3364: Collective on SNES
3366: Input Parameter:
3367: + snes - nonlinear solver
3368: . U - the current state at which to evaluate the residual
3369: - ctx - user context, must be a TS
3371: Output Parameter:
3372: + A - the Jacobian
3373: . B - the preconditioning matrix (may be the same as A)
3374: - flag - indicates any structure change in the matrix
3376: Notes:
3377: This function is not normally called by users and is automatically registered with the SNES used by TS.
3379: Level: developer
3381: .seealso: SNESSetJacobian()
3382: @*/
3383: PetscErrorCode SNESTSFormJacobian(SNES snes,Vec U,Mat *A,Mat *B,MatStructure *flag,void *ctx)
3384: {
3385: TS ts = (TS)ctx;
3397: (ts->ops->snesjacobian)(snes,U,A,B,flag,ts);
3398: return(0);
3399: }
3403: /*@C
3404: TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems only
3406: Collective on TS
3408: Input Arguments:
3409: + ts - time stepping context
3410: . t - time at which to evaluate
3411: . U - state at which to evaluate
3412: - ctx - context
3414: Output Arguments:
3415: . F - right hand side
3417: Level: intermediate
3419: Notes:
3420: This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
3421: The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().
3423: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
3424: @*/
3425: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
3426: {
3428: Mat Arhs,Brhs;
3429: MatStructure flg2;
3432: TSGetRHSMats_Private(ts,&Arhs,&Brhs);
3433: TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
3434: MatMult(Arhs,U,F);
3435: return(0);
3436: }
3440: /*@C
3441: TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.
3443: Collective on TS
3445: Input Arguments:
3446: + ts - time stepping context
3447: . t - time at which to evaluate
3448: . U - state at which to evaluate
3449: - ctx - context
3451: Output Arguments:
3452: + A - pointer to operator
3453: . B - pointer to preconditioning matrix
3454: - flg - matrix structure flag
3456: Level: intermediate
3458: Notes:
3459: This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.
3461: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
3462: @*/
3463: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3464: {
3466: *flg = SAME_PRECONDITIONER;
3467: return(0);
3468: }
3472: /*@C
3473: TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only
3475: Collective on TS
3477: Input Arguments:
3478: + ts - time stepping context
3479: . t - time at which to evaluate
3480: . U - state at which to evaluate
3481: . Udot - time derivative of state vector
3482: - ctx - context
3484: Output Arguments:
3485: . F - left hand side
3487: Level: intermediate
3489: Notes:
3490: The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
3491: user is required to write their own TSComputeIFunction.
3492: This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
3493: The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().
3495: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant()
3496: @*/
3497: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
3498: {
3500: Mat A,B;
3501: MatStructure flg2;
3504: TSGetIJacobian(ts,&A,&B,NULL,NULL);
3505: TSComputeIJacobian(ts,t,U,Udot,1.0,&A,&B,&flg2,PETSC_TRUE);
3506: MatMult(A,Udot,F);
3507: return(0);
3508: }
3512: /*@C
3513: TSComputeIJacobianConstant - Reuses a Jacobian that is time-independent.
3515: Collective on TS
3517: Input Arguments:
3518: + ts - time stepping context
3519: . t - time at which to evaluate
3520: . U - state at which to evaluate
3521: . Udot - time derivative of state vector
3522: . shift - shift to apply
3523: - ctx - context
3525: Output Arguments:
3526: + A - pointer to operator
3527: . B - pointer to preconditioning matrix
3528: - flg - matrix structure flag
3530: Level: intermediate
3532: Notes:
3533: This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.
3535: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
3536: @*/
3537: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3538: {
3540: *flg = SAME_PRECONDITIONER;
3541: return(0);
3542: }
3545: /*@
3546: TSGetEquationType - Gets the type of the equation that TS is solving.
3548: Not Collective
3550: Input Parameter:
3551: . ts - the TS context
3553: Output Parameter:
3554: . equation_type - see TSEquationType
3556: Level: beginner
3558: .keywords: TS, equation type
3560: .seealso: TSSetEquationType(), TSEquationType
3561: @*/
3562: PetscErrorCode TSGetEquationType(TS ts,TSEquationType *equation_type)
3563: {
3567: *equation_type = ts->equation_type;
3568: return(0);
3569: }
3573: /*@
3574: TSSetEquationType - Sets the type of the equation that TS is solving.
3576: Not Collective
3578: Input Parameter:
3579: + ts - the TS context
3580: . equation_type - see TSEquationType
3582: Level: advanced
3584: .keywords: TS, equation type
3586: .seealso: TSGetEquationType(), TSEquationType
3587: @*/
3588: PetscErrorCode TSSetEquationType(TS ts,TSEquationType equation_type)
3589: {
3592: ts->equation_type = equation_type;
3593: return(0);
3594: }
3598: /*@
3599: TSGetConvergedReason - Gets the reason the TS iteration was stopped.
3601: Not Collective
3603: Input Parameter:
3604: . ts - the TS context
3606: Output Parameter:
3607: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3608: manual pages for the individual convergence tests for complete lists
3610: Level: beginner
3612: Notes:
3613: Can only be called after the call to TSSolve() is complete.
3615: .keywords: TS, nonlinear, set, convergence, test
3617: .seealso: TSSetConvergenceTest(), TSConvergedReason
3618: @*/
3619: PetscErrorCode TSGetConvergedReason(TS ts,TSConvergedReason *reason)
3620: {
3624: *reason = ts->reason;
3625: return(0);
3626: }
3630: /*@
3631: TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.
3633: Not Collective
3635: Input Parameter:
3636: + ts - the TS context
3637: . reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3638: manual pages for the individual convergence tests for complete lists
3640: Level: advanced
3642: Notes:
3643: Can only be called during TSSolve() is active.
3645: .keywords: TS, nonlinear, set, convergence, test
3647: .seealso: TSConvergedReason
3648: @*/
3649: PetscErrorCode TSSetConvergedReason(TS ts,TSConvergedReason reason)
3650: {
3653: ts->reason = reason;
3654: return(0);
3655: }
3659: /*@
3660: TSGetSolveTime - Gets the time after a call to TSSolve()
3662: Not Collective
3664: Input Parameter:
3665: . ts - the TS context
3667: Output Parameter:
3668: . ftime - the final time. This time should correspond to the final time set with TSSetDuration()
3670: Level: beginner
3672: Notes:
3673: Can only be called after the call to TSSolve() is complete.
3675: .keywords: TS, nonlinear, set, convergence, test
3677: .seealso: TSSetConvergenceTest(), TSConvergedReason
3678: @*/
3679: PetscErrorCode TSGetSolveTime(TS ts,PetscReal *ftime)
3680: {
3684: *ftime = ts->solvetime;
3685: return(0);
3686: }
3690: /*@
3691: TSGetSNESIterations - Gets the total number of nonlinear iterations
3692: used by the time integrator.
3694: Not Collective
3696: Input Parameter:
3697: . ts - TS context
3699: Output Parameter:
3700: . nits - number of nonlinear iterations
3702: Notes:
3703: This counter is reset to zero for each successive call to TSSolve().
3705: Level: intermediate
3707: .keywords: TS, get, number, nonlinear, iterations
3709: .seealso: TSGetKSPIterations()
3710: @*/
3711: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
3712: {
3716: *nits = ts->snes_its;
3717: return(0);
3718: }
3722: /*@
3723: TSGetKSPIterations - Gets the total number of linear iterations
3724: used by the time integrator.
3726: Not Collective
3728: Input Parameter:
3729: . ts - TS context
3731: Output Parameter:
3732: . lits - number of linear iterations
3734: Notes:
3735: This counter is reset to zero for each successive call to TSSolve().
3737: Level: intermediate
3739: .keywords: TS, get, number, linear, iterations
3741: .seealso: TSGetSNESIterations(), SNESGetKSPIterations()
3742: @*/
3743: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
3744: {
3748: *lits = ts->ksp_its;
3749: return(0);
3750: }
3754: /*@
3755: TSGetStepRejections - Gets the total number of rejected steps.
3757: Not Collective
3759: Input Parameter:
3760: . ts - TS context
3762: Output Parameter:
3763: . rejects - number of steps rejected
3765: Notes:
3766: This counter is reset to zero for each successive call to TSSolve().
3768: Level: intermediate
3770: .keywords: TS, get, number
3772: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
3773: @*/
3774: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
3775: {
3779: *rejects = ts->reject;
3780: return(0);
3781: }
3785: /*@
3786: TSGetSNESFailures - Gets the total number of failed SNES solves
3788: Not Collective
3790: Input Parameter:
3791: . ts - TS context
3793: Output Parameter:
3794: . fails - number of failed nonlinear solves
3796: Notes:
3797: This counter is reset to zero for each successive call to TSSolve().
3799: Level: intermediate
3801: .keywords: TS, get, number
3803: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
3804: @*/
3805: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
3806: {
3810: *fails = ts->num_snes_failures;
3811: return(0);
3812: }
3816: /*@
3817: TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails
3819: Not Collective
3821: Input Parameter:
3822: + ts - TS context
3823: - rejects - maximum number of rejected steps, pass -1 for unlimited
3825: Notes:
3826: The counter is reset to zero for each step
3828: Options Database Key:
3829: . -ts_max_reject - Maximum number of step rejections before a step fails
3831: Level: intermediate
3833: .keywords: TS, set, maximum, number
3835: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
3836: @*/
3837: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
3838: {
3841: ts->max_reject = rejects;
3842: return(0);
3843: }
3847: /*@
3848: TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves
3850: Not Collective
3852: Input Parameter:
3853: + ts - TS context
3854: - fails - maximum number of failed nonlinear solves, pass -1 for unlimited
3856: Notes:
3857: The counter is reset to zero for each successive call to TSSolve().
3859: Options Database Key:
3860: . -ts_max_snes_failures - Maximum number of nonlinear solve failures
3862: Level: intermediate
3864: .keywords: TS, set, maximum, number
3866: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
3867: @*/
3868: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
3869: {
3872: ts->max_snes_failures = fails;
3873: return(0);
3874: }
3878: /*@
3879: TSSetErrorIfStepFails - Error if no step succeeds
3881: Not Collective
3883: Input Parameter:
3884: + ts - TS context
3885: - err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure
3887: Options Database Key:
3888: . -ts_error_if_step_fails - Error if no step succeeds
3890: Level: intermediate
3892: .keywords: TS, set, error
3894: .seealso: TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
3895: @*/
3896: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
3897: {
3900: ts->errorifstepfailed = err;
3901: return(0);
3902: }
3906: /*@C
3907: TSMonitorSolutionBinary - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file
3909: Collective on TS
3911: Input Parameters:
3912: + ts - the TS context
3913: . step - current time-step
3914: . ptime - current time
3915: . u - current state
3916: - viewer - binary viewer
3918: Level: intermediate
3920: .keywords: TS, vector, monitor, view
3922: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3923: @*/
3924: PetscErrorCode TSMonitorSolutionBinary(TS ts,PetscInt step,PetscReal ptime,Vec u,void *viewer)
3925: {
3927: PetscViewer v = (PetscViewer)viewer;
3930: VecView(u,v);
3931: return(0);
3932: }
3936: /*@C
3937: TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.
3939: Collective on TS
3941: Input Parameters:
3942: + ts - the TS context
3943: . step - current time-step
3944: . ptime - current time
3945: . u - current state
3946: - filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
3948: Level: intermediate
3950: Notes:
3951: The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
3952: These are named according to the file name template.
3954: This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().
3956: .keywords: TS, vector, monitor, view
3958: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3959: @*/
3960: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
3961: {
3963: char filename[PETSC_MAX_PATH_LEN];
3964: PetscViewer viewer;
3967: PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
3968: PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
3969: VecView(u,viewer);
3970: PetscViewerDestroy(&viewer);
3971: return(0);
3972: }
3976: /*@C
3977: TSMonitorSolutionVTKDestroy - Destroy context for monitoring
3979: Collective on TS
3981: Input Parameters:
3982: . filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)
3984: Level: intermediate
3986: Note:
3987: This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().
3989: .keywords: TS, vector, monitor, view
3991: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
3992: @*/
3993: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
3994: {
3998: PetscFree(*(char**)filenametemplate);
3999: return(0);
4000: }
4004: /*@
4005: TSGetAdapt - Get the adaptive controller context for the current method
4007: Collective on TS if controller has not been created yet
4009: Input Arguments:
4010: . ts - time stepping context
4012: Output Arguments:
4013: . adapt - adaptive controller
4015: Level: intermediate
4017: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
4018: @*/
4019: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
4020: {
4026: if (!ts->adapt) {
4027: TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
4028: PetscLogObjectParent(ts,ts->adapt);
4029: PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
4030: }
4031: *adapt = ts->adapt;
4032: return(0);
4033: }
4037: /*@
4038: TSSetTolerances - Set tolerances for local truncation error when using adaptive controller
4040: Logically Collective
4042: Input Arguments:
4043: + ts - time integration context
4044: . atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
4045: . vatol - vector of absolute tolerances or NULL, used in preference to atol if present
4046: . rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
4047: - vrtol - vector of relative tolerances or NULL, used in preference to atol if present
4049: Level: beginner
4051: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
4052: @*/
4053: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
4054: {
4058: if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
4059: if (vatol) {
4060: PetscObjectReference((PetscObject)vatol);
4061: VecDestroy(&ts->vatol);
4063: ts->vatol = vatol;
4064: }
4065: if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
4066: if (vrtol) {
4067: PetscObjectReference((PetscObject)vrtol);
4068: VecDestroy(&ts->vrtol);
4070: ts->vrtol = vrtol;
4071: }
4072: return(0);
4073: }
4077: /*@
4078: TSGetTolerances - Get tolerances for local truncation error when using adaptive controller
4080: Logically Collective
4082: Input Arguments:
4083: . ts - time integration context
4085: Output Arguments:
4086: + atol - scalar absolute tolerances, NULL to ignore
4087: . vatol - vector of absolute tolerances, NULL to ignore
4088: . rtol - scalar relative tolerances, NULL to ignore
4089: - vrtol - vector of relative tolerances, NULL to ignore
4091: Level: beginner
4093: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
4094: @*/
4095: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
4096: {
4098: if (atol) *atol = ts->atol;
4099: if (vatol) *vatol = ts->vatol;
4100: if (rtol) *rtol = ts->rtol;
4101: if (vrtol) *vrtol = ts->vrtol;
4102: return(0);
4103: }
4107: /*@
4108: TSErrorNormWRMS - compute a weighted norm of the difference between a vector and the current state
4110: Collective on TS
4112: Input Arguments:
4113: + ts - time stepping context
4114: - Y - state vector to be compared to ts->vec_sol
4116: Output Arguments:
4117: . norm - weighted norm, a value of 1.0 is considered small
4119: Level: developer
4121: .seealso: TSSetTolerances()
4122: @*/
4123: PetscErrorCode TSErrorNormWRMS(TS ts,Vec Y,PetscReal *norm)
4124: {
4125: PetscErrorCode ierr;
4126: PetscInt i,n,N;
4127: const PetscScalar *u,*y;
4128: Vec U;
4129: PetscReal sum,gsum;
4135: U = ts->vec_sol;
4137: if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"Y cannot be the TS solution vector");
4139: VecGetSize(U,&N);
4140: VecGetLocalSize(U,&n);
4141: VecGetArrayRead(U,&u);
4142: VecGetArrayRead(Y,&y);
4143: sum = 0.;
4144: if (ts->vatol && ts->vrtol) {
4145: const PetscScalar *atol,*rtol;
4146: VecGetArrayRead(ts->vatol,&atol);
4147: VecGetArrayRead(ts->vrtol,&rtol);
4148: for (i=0; i<n; i++) {
4149: PetscReal tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4150: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4151: }
4152: VecRestoreArrayRead(ts->vatol,&atol);
4153: VecRestoreArrayRead(ts->vrtol,&rtol);
4154: } else if (ts->vatol) { /* vector atol, scalar rtol */
4155: const PetscScalar *atol;
4156: VecGetArrayRead(ts->vatol,&atol);
4157: for (i=0; i<n; i++) {
4158: PetscReal tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4159: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4160: }
4161: VecRestoreArrayRead(ts->vatol,&atol);
4162: } else if (ts->vrtol) { /* scalar atol, vector rtol */
4163: const PetscScalar *rtol;
4164: VecGetArrayRead(ts->vrtol,&rtol);
4165: for (i=0; i<n; i++) {
4166: PetscReal tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4167: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4168: }
4169: VecRestoreArrayRead(ts->vrtol,&rtol);
4170: } else { /* scalar atol, scalar rtol */
4171: for (i=0; i<n; i++) {
4172: PetscReal tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4173: sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4174: }
4175: }
4176: VecRestoreArrayRead(U,&u);
4177: VecRestoreArrayRead(Y,&y);
4179: MPI_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
4180: *norm = PetscSqrtReal(gsum / N);
4181: if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
4182: return(0);
4183: }
4187: /*@
4188: TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler
4190: Logically Collective on TS
4192: Input Arguments:
4193: + ts - time stepping context
4194: - cfltime - maximum stable time step if using forward Euler (value can be different on each process)
4196: Note:
4197: After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()
4199: Level: intermediate
4201: .seealso: TSGetCFLTime(), TSADAPTCFL
4202: @*/
4203: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
4204: {
4207: ts->cfltime_local = cfltime;
4208: ts->cfltime = -1.;
4209: return(0);
4210: }
4214: /*@
4215: TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler
4217: Collective on TS
4219: Input Arguments:
4220: . ts - time stepping context
4222: Output Arguments:
4223: . cfltime - maximum stable time step for forward Euler
4225: Level: advanced
4227: .seealso: TSSetCFLTimeLocal()
4228: @*/
4229: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
4230: {
4234: if (ts->cfltime < 0) {
4235: MPI_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
4236: }
4237: *cfltime = ts->cfltime;
4238: return(0);
4239: }
4243: /*@
4244: TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu
4246: Input Parameters:
4247: . ts - the TS context.
4248: . xl - lower bound.
4249: . xu - upper bound.
4251: Notes:
4252: If this routine is not called then the lower and upper bounds are set to
4253: SNES_VI_NINF and SNES_VI_INF respectively during SNESSetUp().
4255: Level: advanced
4257: @*/
4258: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
4259: {
4261: SNES snes;
4264: TSGetSNES(ts,&snes);
4265: SNESVISetVariableBounds(snes,xl,xu);
4266: return(0);
4267: }
4269: #if defined(PETSC_HAVE_MATLAB_ENGINE)
4270: #include <mex.h>
4272: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;
4276: /*
4277: TSComputeFunction_Matlab - Calls the function that has been set with
4278: TSSetFunctionMatlab().
4280: Collective on TS
4282: Input Parameters:
4283: + snes - the TS context
4284: - u - input vector
4286: Output Parameter:
4287: . y - function vector, as set by TSSetFunction()
4289: Notes:
4290: TSComputeFunction() is typically used within nonlinear solvers
4291: implementations, so most users would not generally call this routine
4292: themselves.
4294: Level: developer
4296: .keywords: TS, nonlinear, compute, function
4298: .seealso: TSSetFunction(), TSGetFunction()
4299: */
4300: PetscErrorCode TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
4301: {
4302: PetscErrorCode ierr;
4303: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4304: int nlhs = 1,nrhs = 7;
4305: mxArray *plhs[1],*prhs[7];
4306: long long int lx = 0,lxdot = 0,ly = 0,ls = 0;
4316: PetscMemcpy(&ls,&snes,sizeof(snes));
4317: PetscMemcpy(&lx,&u,sizeof(u));
4318: PetscMemcpy(&lxdot,&udot,sizeof(udot));
4319: PetscMemcpy(&ly,&y,sizeof(u));
4321: prhs[0] = mxCreateDoubleScalar((double)ls);
4322: prhs[1] = mxCreateDoubleScalar(time);
4323: prhs[2] = mxCreateDoubleScalar((double)lx);
4324: prhs[3] = mxCreateDoubleScalar((double)lxdot);
4325: prhs[4] = mxCreateDoubleScalar((double)ly);
4326: prhs[5] = mxCreateString(sctx->funcname);
4327: prhs[6] = sctx->ctx;
4328: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
4329: mxGetScalar(plhs[0]);
4330: mxDestroyArray(prhs[0]);
4331: mxDestroyArray(prhs[1]);
4332: mxDestroyArray(prhs[2]);
4333: mxDestroyArray(prhs[3]);
4334: mxDestroyArray(prhs[4]);
4335: mxDestroyArray(prhs[5]);
4336: mxDestroyArray(plhs[0]);
4337: return(0);
4338: }
4343: /*
4344: TSSetFunctionMatlab - Sets the function evaluation routine and function
4345: vector for use by the TS routines in solving ODEs
4346: equations from MATLAB. Here the function is a string containing the name of a MATLAB function
4348: Logically Collective on TS
4350: Input Parameters:
4351: + ts - the TS context
4352: - func - function evaluation routine
4354: Calling sequence of func:
4355: $ func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);
4357: Level: beginner
4359: .keywords: TS, nonlinear, set, function
4361: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4362: */
4363: PetscErrorCode TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
4364: {
4365: PetscErrorCode ierr;
4366: TSMatlabContext *sctx;
4369: /* currently sctx is memory bleed */
4370: PetscMalloc(sizeof(TSMatlabContext),&sctx);
4371: PetscStrallocpy(func,&sctx->funcname);
4372: /*
4373: This should work, but it doesn't
4374: sctx->ctx = ctx;
4375: mexMakeArrayPersistent(sctx->ctx);
4376: */
4377: sctx->ctx = mxDuplicateArray(ctx);
4379: TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
4380: return(0);
4381: }
4385: /*
4386: TSComputeJacobian_Matlab - Calls the function that has been set with
4387: TSSetJacobianMatlab().
4389: Collective on TS
4391: Input Parameters:
4392: + ts - the TS context
4393: . u - input vector
4394: . A, B - the matrices
4395: - ctx - user context
4397: Output Parameter:
4398: . flag - structure of the matrix
4400: Level: developer
4402: .keywords: TS, nonlinear, compute, function
4404: .seealso: TSSetFunction(), TSGetFunction()
4405: @*/
4406: PetscErrorCode TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flag, void *ctx)
4407: {
4408: PetscErrorCode ierr;
4409: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4410: int nlhs = 2,nrhs = 9;
4411: mxArray *plhs[2],*prhs[9];
4412: long long int lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;
4418: /* call Matlab function in ctx with arguments u and y */
4420: PetscMemcpy(&ls,&ts,sizeof(ts));
4421: PetscMemcpy(&lx,&u,sizeof(u));
4422: PetscMemcpy(&lxdot,&udot,sizeof(u));
4423: PetscMemcpy(&lA,A,sizeof(u));
4424: PetscMemcpy(&lB,B,sizeof(u));
4426: prhs[0] = mxCreateDoubleScalar((double)ls);
4427: prhs[1] = mxCreateDoubleScalar((double)time);
4428: prhs[2] = mxCreateDoubleScalar((double)lx);
4429: prhs[3] = mxCreateDoubleScalar((double)lxdot);
4430: prhs[4] = mxCreateDoubleScalar((double)shift);
4431: prhs[5] = mxCreateDoubleScalar((double)lA);
4432: prhs[6] = mxCreateDoubleScalar((double)lB);
4433: prhs[7] = mxCreateString(sctx->funcname);
4434: prhs[8] = sctx->ctx;
4435: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
4436: mxGetScalar(plhs[0]);
4437: *flag = (MatStructure) mxGetScalar(plhs[1]);
4438: mxDestroyArray(prhs[0]);
4439: mxDestroyArray(prhs[1]);
4440: mxDestroyArray(prhs[2]);
4441: mxDestroyArray(prhs[3]);
4442: mxDestroyArray(prhs[4]);
4443: mxDestroyArray(prhs[5]);
4444: mxDestroyArray(prhs[6]);
4445: mxDestroyArray(prhs[7]);
4446: mxDestroyArray(plhs[0]);
4447: mxDestroyArray(plhs[1]);
4448: return(0);
4449: }
4454: /*
4455: TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
4456: vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function
4458: Logically Collective on TS
4460: Input Parameters:
4461: + ts - the TS context
4462: . A,B - Jacobian matrices
4463: . func - function evaluation routine
4464: - ctx - user context
4466: Calling sequence of func:
4467: $ flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);
4470: Level: developer
4472: .keywords: TS, nonlinear, set, function
4474: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4475: */
4476: PetscErrorCode TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
4477: {
4478: PetscErrorCode ierr;
4479: TSMatlabContext *sctx;
4482: /* currently sctx is memory bleed */
4483: PetscMalloc(sizeof(TSMatlabContext),&sctx);
4484: PetscStrallocpy(func,&sctx->funcname);
4485: /*
4486: This should work, but it doesn't
4487: sctx->ctx = ctx;
4488: mexMakeArrayPersistent(sctx->ctx);
4489: */
4490: sctx->ctx = mxDuplicateArray(ctx);
4492: TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
4493: return(0);
4494: }
4498: /*
4499: TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().
4501: Collective on TS
4503: .seealso: TSSetFunction(), TSGetFunction()
4504: @*/
4505: PetscErrorCode TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
4506: {
4507: PetscErrorCode ierr;
4508: TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4509: int nlhs = 1,nrhs = 6;
4510: mxArray *plhs[1],*prhs[6];
4511: long long int lx = 0,ls = 0;
4517: PetscMemcpy(&ls,&ts,sizeof(ts));
4518: PetscMemcpy(&lx,&u,sizeof(u));
4520: prhs[0] = mxCreateDoubleScalar((double)ls);
4521: prhs[1] = mxCreateDoubleScalar((double)it);
4522: prhs[2] = mxCreateDoubleScalar((double)time);
4523: prhs[3] = mxCreateDoubleScalar((double)lx);
4524: prhs[4] = mxCreateString(sctx->funcname);
4525: prhs[5] = sctx->ctx;
4526: mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
4527: mxGetScalar(plhs[0]);
4528: mxDestroyArray(prhs[0]);
4529: mxDestroyArray(prhs[1]);
4530: mxDestroyArray(prhs[2]);
4531: mxDestroyArray(prhs[3]);
4532: mxDestroyArray(prhs[4]);
4533: mxDestroyArray(plhs[0]);
4534: return(0);
4535: }
4540: /*
4541: TSMonitorSetMatlab - Sets the monitor function from Matlab
4543: Level: developer
4545: .keywords: TS, nonlinear, set, function
4547: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4548: */
4549: PetscErrorCode TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
4550: {
4551: PetscErrorCode ierr;
4552: TSMatlabContext *sctx;
4555: /* currently sctx is memory bleed */
4556: PetscMalloc(sizeof(TSMatlabContext),&sctx);
4557: PetscStrallocpy(func,&sctx->funcname);
4558: /*
4559: This should work, but it doesn't
4560: sctx->ctx = ctx;
4561: mexMakeArrayPersistent(sctx->ctx);
4562: */
4563: sctx->ctx = mxDuplicateArray(ctx);
4565: TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
4566: return(0);
4567: }
4568: #endif
4574: /*@C
4575: TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
4576: in a time based line graph
4578: Collective on TS
4580: Input Parameters:
4581: + ts - the TS context
4582: . step - current time-step
4583: . ptime - current time
4584: - lg - a line graph object
4586: Level: intermediate
4588: Notes: each process in a parallel run displays its component solutions in a separate window
4590: .keywords: TS, vector, monitor, view
4592: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4593: @*/
4594: PetscErrorCode TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4595: {
4596: PetscErrorCode ierr;
4597: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
4598: const PetscScalar *yy;
4599: PetscInt dim;
4602: if (!step) {
4603: PetscDrawAxis axis;
4604: PetscDrawLGGetAxis(ctx->lg,&axis);
4605: PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
4606: VecGetLocalSize(u,&dim);
4607: PetscDrawLGSetDimension(ctx->lg,dim);
4608: PetscDrawLGReset(ctx->lg);
4609: }
4610: VecGetArrayRead(u,&yy);
4611: #if defined(PETSC_USE_COMPLEX)
4612: {
4613: PetscReal *yreal;
4614: PetscInt i,n;
4615: VecGetLocalSize(u,&n);
4616: PetscMalloc(n*sizeof(PetscReal),&yreal);
4617: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4618: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4619: PetscFree(yreal);
4620: }
4621: #else
4622: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4623: #endif
4624: VecRestoreArrayRead(u,&yy);
4625: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4626: PetscDrawLGDraw(ctx->lg);
4627: }
4628: return(0);
4629: }
4633: /*@C
4634: TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the solution vector
4635: in a time based line graph
4637: Collective on TS
4639: Input Parameters:
4640: + ts - the TS context
4641: . step - current time-step
4642: . ptime - current time
4643: - lg - a line graph object
4645: Level: intermediate
4647: Notes:
4648: Only for sequential solves.
4650: The user must provide the solution using TSSetSolutionFunction() to use this monitor.
4652: Options Database Keys:
4653: . -ts_monitor_lg_error - create a graphical monitor of error history
4655: .keywords: TS, vector, monitor, view
4657: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4658: @*/
4659: PetscErrorCode TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4660: {
4661: PetscErrorCode ierr;
4662: TSMonitorLGCtx ctx = (TSMonitorLGCtx)dummy;
4663: const PetscScalar *yy;
4664: Vec y;
4665: PetscInt dim;
4668: if (!step) {
4669: PetscDrawAxis axis;
4670: PetscDrawLGGetAxis(ctx->lg,&axis);
4671: PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Solution");
4672: VecGetLocalSize(u,&dim);
4673: PetscDrawLGSetDimension(ctx->lg,dim);
4674: PetscDrawLGReset(ctx->lg);
4675: }
4676: VecDuplicate(u,&y);
4677: TSComputeSolutionFunction(ts,ptime,y);
4678: VecAXPY(y,-1.0,u);
4679: VecGetArrayRead(y,&yy);
4680: #if defined(PETSC_USE_COMPLEX)
4681: {
4682: PetscReal *yreal;
4683: PetscInt i,n;
4684: VecGetLocalSize(y,&n);
4685: PetscMalloc(n*sizeof(PetscReal),&yreal);
4686: for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4687: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4688: PetscFree(yreal);
4689: }
4690: #else
4691: PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4692: #endif
4693: VecRestoreArrayRead(y,&yy);
4694: VecDestroy(&y);
4695: if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4696: PetscDrawLGDraw(ctx->lg);
4697: }
4698: return(0);
4699: }
4703: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4704: {
4705: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4706: PetscReal x = ptime,y;
4708: PetscInt its;
4711: if (!n) {
4712: PetscDrawAxis axis;
4714: PetscDrawLGGetAxis(ctx->lg,&axis);
4715: PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
4716: PetscDrawLGReset(ctx->lg);
4718: ctx->snes_its = 0;
4719: }
4720: TSGetSNESIterations(ts,&its);
4721: y = its - ctx->snes_its;
4722: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4723: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4724: PetscDrawLGDraw(ctx->lg);
4725: }
4726: ctx->snes_its = its;
4727: return(0);
4728: }
4732: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4733: {
4734: TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4735: PetscReal x = ptime,y;
4737: PetscInt its;
4740: if (!n) {
4741: PetscDrawAxis axis;
4743: PetscDrawLGGetAxis(ctx->lg,&axis);
4744: PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
4745: PetscDrawLGReset(ctx->lg);
4747: ctx->ksp_its = 0;
4748: }
4749: TSGetKSPIterations(ts,&its);
4750: y = its - ctx->ksp_its;
4751: PetscDrawLGAddPoint(ctx->lg,&x,&y);
4752: if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4753: PetscDrawLGDraw(ctx->lg);
4754: }
4755: ctx->ksp_its = its;
4756: return(0);
4757: }
4761: /*@
4762: TSComputeLinearStability - computes the linear stability function at a point
4764: Collective on TS and Vec
4766: Input Parameters:
4767: + ts - the TS context
4768: - xr,xi - real and imaginary part of input arguments
4770: Output Parameters:
4771: . yr,yi - real and imaginary part of function value
4773: Level: developer
4775: .keywords: TS, compute
4777: .seealso: TSSetRHSFunction(), TSComputeIFunction()
4778: @*/
4779: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
4780: {
4785: if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
4786: (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
4787: return(0);
4788: }