Actual source code: ts.c

petsc-3.4.2 2013-07-02
  2: #include <petsc-private/tsimpl.h>        /*I "petscts.h"  I*/
  3: #include <petscdmshell.h>
  4: #include <petscdmda.h>
  5: #include <petscviewer.h>
  6: #include <petscdraw.h>

  8: /* Logging support */
  9: PetscClassId  TS_CLASSID, DMTS_CLASSID;
 10: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;

 12: const char *const TSExactFinalTimeOptions[] = {"STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",0};

 16: /*
 17:   TSSetTypeFromOptions - Sets the type of ts from user options.

 19:   Collective on TS

 21:   Input Parameter:
 22: . ts - The ts

 24:   Level: intermediate

 26: .keywords: TS, set, options, database, type
 27: .seealso: TSSetFromOptions(), TSSetType()
 28: */
 29: static PetscErrorCode TSSetTypeFromOptions(TS ts)
 30: {
 31:   PetscBool      opt;
 32:   const char     *defaultType;
 33:   char           typeName[256];

 37:   if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
 38:   else defaultType = TSEULER;

 40:   if (!TSRegisterAllCalled) {TSRegisterAll();}
 41:   PetscOptionsList("-ts_type", "TS method"," TSSetType", TSList, defaultType, typeName, 256, &opt);
 42:   if (opt) {
 43:     TSSetType(ts, typeName);
 44:   } else {
 45:     TSSetType(ts, defaultType);
 46:   }
 47:   return(0);
 48: }

 50: struct _n_TSMonitorDrawCtx {
 51:   PetscViewer   viewer;
 52:   PetscDrawAxis axis;
 53:   Vec           initialsolution;
 54:   PetscBool     showinitial;
 55:   PetscInt      howoften;  /* when > 0 uses step % howoften, when negative only final solution plotted */
 56:   PetscBool     showtimestepandtime;
 57:   int           color;
 58: };

 62: /*@
 63:    TSSetFromOptions - Sets various TS parameters from user options.

 65:    Collective on TS

 67:    Input Parameter:
 68: .  ts - the TS context obtained from TSCreate()

 70:    Options Database Keys:
 71: +  -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSGL, TSSSP
 72: .  -ts_max_steps maxsteps - maximum number of time-steps to take
 73: .  -ts_final_time time - maximum time to compute to
 74: .  -ts_dt dt - initial time step
 75: .  -ts_monitor - print information at each timestep
 76: .  -ts_monitor_lg_timestep - Monitor timestep size graphically
 77: .  -ts_monitor_lg_solution - Monitor solution graphically
 78: .  -ts_monitor_lg_error - Monitor error graphically
 79: .  -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
 80: .  -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
 81: .  -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
 82: .  -ts_monitor_draw_solution - Monitor solution graphically
 83: .  -ts_monitor_draw_solution_phase - Monitor solution graphically with phase diagram
 84: .  -ts_monitor_draw_error - Monitor error graphically
 85: .  -ts_monitor_solution_binary <filename> - Save each solution to a binary file
 86: -  -ts_monitor_solution_vtk <filename.vts> - Save each time step to a binary file, use filename-%%03D.vts

 88:    Developer Note: We should unify all the -ts_monitor options in the way that -xxx_view has been unified

 90:    Level: beginner

 92: .keywords: TS, timestep, set, options, database

 94: .seealso: TSGetType()
 95: @*/
 96: PetscErrorCode  TSSetFromOptions(TS ts)
 97: {
 98:   PetscBool              opt,flg;
 99:   PetscErrorCode         ierr;
100:   PetscViewer            monviewer;
101:   char                   monfilename[PETSC_MAX_PATH_LEN];
102:   SNES                   snes;
103:   TSAdapt                adapt;
104:   PetscReal              time_step;
105:   TSExactFinalTimeOption eftopt;
106:   char                   dir[16];

110:   PetscObjectOptionsBegin((PetscObject)ts);
111:   /* Handle TS type options */
112:   TSSetTypeFromOptions(ts);

114:   /* Handle generic TS options */
115:   PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetDuration",ts->max_steps,&ts->max_steps,NULL);
116:   PetscOptionsReal("-ts_final_time","Time to run to","TSSetDuration",ts->max_time,&ts->max_time,NULL);
117:   PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
118:   PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
119:   if (flg) {
120:     TSSetTimeStep(ts,time_step);
121:   }
122:   PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
123:   if (flg) {TSSetExactFinalTime(ts,eftopt);}
124:   PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
125:   PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
126:   PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
127:   PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
128:   PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);

130:   /* Monitor options */
131:   PetscOptionsString("-ts_monitor","Monitor timestep size","TSMonitorDefault","stdout",monfilename,PETSC_MAX_PATH_LEN,&flg);
132:   if (flg) {
133:     PetscViewerASCIIOpen(PetscObjectComm((PetscObject)ts),monfilename,&monviewer);
134:     TSMonitorSet(ts,TSMonitorDefault,monviewer,(PetscErrorCode (*)(void**))PetscViewerDestroy);
135:   }
136:   PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
137:   if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}

139:   PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
140:   if (opt) {
141:     TSMonitorLGCtx ctx;
142:     PetscInt       howoften = 1;

144:     PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
145:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
146:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
147:   }
148:   PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
149:   if (opt) {
150:     TSMonitorLGCtx ctx;
151:     PetscInt       howoften = 1;

153:     PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
154:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
155:     TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
156:   }
157:   PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
158:   if (opt) {
159:     TSMonitorLGCtx ctx;
160:     PetscInt       howoften = 1;

162:     PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
163:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
164:     TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
165:   }
166:   PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
167:   if (opt) {
168:     TSMonitorLGCtx ctx;
169:     PetscInt       howoften = 1;

171:     PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
172:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
173:     TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
174:   }
175:   PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
176:   if (opt) {
177:     TSMonitorLGCtx ctx;
178:     PetscInt       howoften = 1;

180:     PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
181:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
182:     TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
183:   }
184:   PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
185:   if (opt) {
186:     TSMonitorSPEigCtx ctx;
187:     PetscInt          howoften = 1;

189:     PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
190:     TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
191:     TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
192:   }
193:   opt  = PETSC_FALSE;
194:   PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
195:   if (opt) {
196:     TSMonitorDrawCtx ctx;
197:     PetscInt         howoften = 1;

199:     PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
200:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
201:     TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
202:   }
203:   opt  = PETSC_FALSE;
204:   PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
205:   if (opt) {
206:     TSMonitorDrawCtx ctx;
207:     PetscReal        bounds[4];
208:     PetscInt         n = 4;
209:     PetscDraw        draw;

211:     PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
212:     if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
213:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,1,&ctx);
214:     PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
215:     PetscDrawClear(draw);
216:     PetscDrawAxisCreate(draw,&ctx->axis);
217:     PetscDrawAxisSetLimits(ctx->axis,bounds[0],bounds[2],bounds[1],bounds[3]);
218:     PetscDrawAxisSetLabels(ctx->axis,"Phase Diagram","Variable 1","Variable 2");
219:     PetscDrawAxisDraw(ctx->axis);
220:     /* PetscDrawSetCoordinates(draw,bounds[0],bounds[1],bounds[2],bounds[3]); */
221:     TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
222:   }
223:   opt  = PETSC_FALSE;
224:   PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
225:   if (opt) {
226:     TSMonitorDrawCtx ctx;
227:     PetscInt         howoften = 1;

229:     PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
230:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),0,0,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
231:     TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
232:   }
233:   opt  = PETSC_FALSE;
234:   PetscOptionsString("-ts_monitor_solution_binary","Save each solution to a binary file","TSMonitorSolutionBinary",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
235:   if (flg) {
236:     PetscViewer ctx;
237:     if (monfilename[0]) {
238:       PetscViewerBinaryOpen(PetscObjectComm((PetscObject)ts),monfilename,FILE_MODE_WRITE,&ctx);
239:       TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))PetscViewerDestroy);
240:     } else {
241:       ctx = PETSC_VIEWER_BINARY_(PetscObjectComm((PetscObject)ts));
242:       TSMonitorSet(ts,TSMonitorSolutionBinary,ctx,(PetscErrorCode (*)(void**))NULL);
243:     }
244:   }
245:   opt  = PETSC_FALSE;
246:   PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",0,monfilename,PETSC_MAX_PATH_LEN,&flg);
247:   if (flg) {
248:     const char *ptr,*ptr2;
249:     char       *filetemplate;
250:     if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
251:     /* Do some cursory validation of the input. */
252:     PetscStrstr(monfilename,"%",(char**)&ptr);
253:     if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
254:     for (ptr++; ptr && *ptr; ptr++) {
255:       PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
256:       if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
257:       if (ptr2) break;
258:     }
259:     PetscStrallocpy(monfilename,&filetemplate);
260:     TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
261:   }

263:   PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,16,&flg);
264:   if (flg) {
265:     TSMonitorDMDARayCtx *rayctx;
266:     int                 ray = 0;
267:     DMDADirection       ddir;
268:     DM                  da;
269:     PetscMPIInt         rank;

271:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
272:     if (dir[0] == 'x') ddir = DMDA_X;
273:     else if (dir[0] == 'y') ddir = DMDA_Y;
274:     else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
275:     sscanf(dir+2,"%d",&ray);

277:     PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %D\n",dir[0],ray);
278:     PetscNew(TSMonitorDMDARayCtx,&rayctx);
279:     TSGetDM(ts,&da);
280:     DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
281:     MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
282:     if (!rank) {
283:       PetscViewerDrawOpen(PETSC_COMM_SELF,0,0,0,0,600,300,&rayctx->viewer);
284:     }
285:     TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
286:   }

288:   TSGetAdapt(ts,&adapt);
289:   TSAdaptSetFromOptions(adapt);

291:   TSGetSNES(ts,&snes);
292:   if (ts->problem_type == TS_LINEAR) {SNESSetType(snes,SNESKSPONLY);}

294:   /* Handle specific TS options */
295:   if (ts->ops->setfromoptions) {
296:     (*ts->ops->setfromoptions)(ts);
297:   }

299:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
300:   PetscObjectProcessOptionsHandlers((PetscObject)ts);
301:   PetscOptionsEnd();
302:   return(0);
303: }

308: /*@
309:    TSComputeRHSJacobian - Computes the Jacobian matrix that has been
310:       set with TSSetRHSJacobian().

312:    Collective on TS and Vec

314:    Input Parameters:
315: +  ts - the TS context
316: .  t - current timestep
317: -  U - input vector

319:    Output Parameters:
320: +  A - Jacobian matrix
321: .  B - optional preconditioning matrix
322: -  flag - flag indicating matrix structure

324:    Notes:
325:    Most users should not need to explicitly call this routine, as it
326:    is used internally within the nonlinear solvers.

328:    See KSPSetOperators() for important information about setting the
329:    flag parameter.

331:    Level: developer

333: .keywords: SNES, compute, Jacobian, matrix

335: .seealso:  TSSetRHSJacobian(), KSPSetOperators()
336: @*/
337: PetscErrorCode  TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg)
338: {
340:   PetscInt       Ustate;
341:   DM             dm;
342:   DMTS           tsdm;
343:   TSRHSJacobian  rhsjacobianfunc;
344:   void           *ctx;
345:   TSIJacobian    ijacobianfunc;

351:   TSGetDM(ts,&dm);
352:   DMGetDMTS(dm,&tsdm);
353:   DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
354:   DMTSGetIJacobian(dm,&ijacobianfunc,NULL);
355:   PetscObjectStateQuery((PetscObject)U,&Ustate);
356:   if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.X == U && ts->rhsjacobian.Xstate == Ustate))) {
357:     *flg = ts->rhsjacobian.mstructure;
358:     return(0);
359:   }

361:   if (!rhsjacobianfunc && !ijacobianfunc) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

363:   if (rhsjacobianfunc) {
364:     PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
365:     *flg = DIFFERENT_NONZERO_PATTERN;
366:     PetscStackPush("TS user Jacobian function");
367:     (*rhsjacobianfunc)(ts,t,U,A,B,flg,ctx);
368:     PetscStackPop;
369:     PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
370:     /* make sure user returned a correct Jacobian and preconditioner */
373:   } else {
374:     MatZeroEntries(*A);
375:     if (*A != *B) {MatZeroEntries(*B);}
376:     *flg = SAME_NONZERO_PATTERN;
377:   }
378:   ts->rhsjacobian.time       = t;
379:   ts->rhsjacobian.X          = U;
380:   PetscObjectStateQuery((PetscObject)U,&ts->rhsjacobian.Xstate);
381:   ts->rhsjacobian.mstructure = *flg;
382:   return(0);
383: }

387: /*@
388:    TSComputeRHSFunction - Evaluates the right-hand-side function.

390:    Collective on TS and Vec

392:    Input Parameters:
393: +  ts - the TS context
394: .  t - current time
395: -  U - state vector

397:    Output Parameter:
398: .  y - right hand side

400:    Note:
401:    Most users should not need to explicitly call this routine, as it
402:    is used internally within the nonlinear solvers.

404:    Level: developer

406: .keywords: TS, compute

408: .seealso: TSSetRHSFunction(), TSComputeIFunction()
409: @*/
410: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
411: {
413:   TSRHSFunction  rhsfunction;
414:   TSIFunction    ifunction;
415:   void           *ctx;
416:   DM             dm;

422:   TSGetDM(ts,&dm);
423:   DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
424:   DMTSGetIFunction(dm,&ifunction,NULL);

426:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

428:   PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
429:   if (rhsfunction) {
430:     PetscStackPush("TS user right-hand-side function");
431:     (*rhsfunction)(ts,t,U,y,ctx);
432:     PetscStackPop;
433:   } else {
434:     VecZeroEntries(y);
435:   }

437:   PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
438:   return(0);
439: }

443: /*@
444:    TSComputeSolutionFunction - Evaluates the solution function.

446:    Collective on TS and Vec

448:    Input Parameters:
449: +  ts - the TS context
450: -  t - current time

452:    Output Parameter:
453: .  U - the solution

455:    Note:
456:    Most users should not need to explicitly call this routine, as it
457:    is used internally within the nonlinear solvers.

459:    Level: developer

461: .keywords: TS, compute

463: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
464: @*/
465: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
466: {
467:   PetscErrorCode     ierr;
468:   TSSolutionFunction solutionfunction;
469:   void               *ctx;
470:   DM                 dm;

475:   TSGetDM(ts,&dm);
476:   DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);

478:   if (solutionfunction) {
479:     PetscStackPush("TS user solution function");
480:     (*solutionfunction)(ts,t,U,ctx);
481:     PetscStackPop;
482:   }
483:   return(0);
484: }
487: /*@
488:    TSComputeForcingFunction - Evaluates the forcing function.

490:    Collective on TS and Vec

492:    Input Parameters:
493: +  ts - the TS context
494: -  t - current time

496:    Output Parameter:
497: .  U - the function value

499:    Note:
500:    Most users should not need to explicitly call this routine, as it
501:    is used internally within the nonlinear solvers.

503:    Level: developer

505: .keywords: TS, compute

507: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
508: @*/
509: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
510: {
511:   PetscErrorCode     ierr, (*forcing)(TS,PetscReal,Vec,void*);
512:   void               *ctx;
513:   DM                 dm;

518:   TSGetDM(ts,&dm);
519:   DMTSGetForcingFunction(dm,&forcing,&ctx);

521:   if (forcing) {
522:     PetscStackPush("TS user forcing function");
523:     (*forcing)(ts,t,U,ctx);
524:     PetscStackPop;
525:   }
526:   return(0);
527: }

531: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
532: {
533:   Vec            F;

537:   *Frhs = NULL;
538:   TSGetIFunction(ts,&F,NULL,NULL);
539:   if (!ts->Frhs) {
540:     VecDuplicate(F,&ts->Frhs);
541:   }
542:   *Frhs = ts->Frhs;
543:   return(0);
544: }

548: static PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
549: {
550:   Mat            A,B;

554:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
555:   if (Arhs) {
556:     if (!ts->Arhs) {
557:       MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
558:     }
559:     *Arhs = ts->Arhs;
560:   }
561:   if (Brhs) {
562:     if (!ts->Brhs) {
563:       MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
564:     }
565:     *Brhs = ts->Brhs;
566:   }
567:   return(0);
568: }

572: /*@
573:    TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0

575:    Collective on TS and Vec

577:    Input Parameters:
578: +  ts - the TS context
579: .  t - current time
580: .  U - state vector
581: .  Udot - time derivative of state vector
582: -  imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate

584:    Output Parameter:
585: .  Y - right hand side

587:    Note:
588:    Most users should not need to explicitly call this routine, as it
589:    is used internally within the nonlinear solvers.

591:    If the user did did not write their equations in implicit form, this
592:    function recasts them in implicit form.

594:    Level: developer

596: .keywords: TS, compute

598: .seealso: TSSetIFunction(), TSComputeRHSFunction()
599: @*/
600: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
601: {
603:   TSIFunction    ifunction;
604:   TSRHSFunction  rhsfunction;
605:   void           *ctx;
606:   DM             dm;


614:   TSGetDM(ts,&dm);
615:   DMTSGetIFunction(dm,&ifunction,&ctx);
616:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

618:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

620:   PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
621:   if (ifunction) {
622:     PetscStackPush("TS user implicit function");
623:     (*ifunction)(ts,t,U,Udot,Y,ctx);
624:     PetscStackPop;
625:   }
626:   if (imex) {
627:     if (!ifunction) {
628:       VecCopy(Udot,Y);
629:     }
630:   } else if (rhsfunction) {
631:     if (ifunction) {
632:       Vec Frhs;
633:       TSGetRHSVec_Private(ts,&Frhs);
634:       TSComputeRHSFunction(ts,t,U,Frhs);
635:       VecAXPY(Y,-1,Frhs);
636:     } else {
637:       TSComputeRHSFunction(ts,t,U,Y);
638:       VecAYPX(Y,-1,Udot);
639:     }
640:   }
641:   PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
642:   return(0);
643: }

647: /*@
648:    TSComputeIJacobian - Evaluates the Jacobian of the DAE

650:    Collective on TS and Vec

652:    Input
653:       Input Parameters:
654: +  ts - the TS context
655: .  t - current timestep
656: .  U - state vector
657: .  Udot - time derivative of state vector
658: .  shift - shift to apply, see note below
659: -  imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate

661:    Output Parameters:
662: +  A - Jacobian matrix
663: .  B - optional preconditioning matrix
664: -  flag - flag indicating matrix structure

666:    Notes:
667:    If F(t,U,Udot)=0 is the DAE, the required Jacobian is

669:    dF/dU + shift*dF/dUdot

671:    Most users should not need to explicitly call this routine, as it
672:    is used internally within the nonlinear solvers.

674:    Level: developer

676: .keywords: TS, compute, Jacobian, matrix

678: .seealso:  TSSetIJacobian()
679: @*/
680: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,PetscBool imex)
681: {
682:   PetscInt       Ustate, Udotstate;
684:   TSIJacobian    ijacobian;
685:   TSRHSJacobian  rhsjacobian;
686:   DM             dm;
687:   void           *ctx;


699:   TSGetDM(ts,&dm);
700:   DMTSGetIJacobian(dm,&ijacobian,&ctx);
701:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

703:   PetscObjectStateQuery((PetscObject)U,&Ustate);
704:   PetscObjectStateQuery((PetscObject)Udot,&Udotstate);
705:   if (ts->ijacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->ijacobian.X == U && ts->ijacobian.Xstate == Ustate && ts->ijacobian.Xdot == Udot && ts->ijacobian.Xdotstate == Udotstate && ts->ijacobian.imex == imex))) {
706:     *flg = ts->ijacobian.mstructure;
707:     MatScale(*A, shift / ts->ijacobian.shift);
708:     return(0);
709:   }

711:   if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

713:   *flg = SAME_NONZERO_PATTERN;  /* In case we're solving a linear problem in which case it wouldn't get initialized below. */
714:   PetscLogEventBegin(TS_JacobianEval,ts,U,*A,*B);
715:   if (ijacobian) {
716:     *flg = DIFFERENT_NONZERO_PATTERN;
717:     PetscStackPush("TS user implicit Jacobian");
718:     (*ijacobian)(ts,t,U,Udot,shift,A,B,flg,ctx);
719:     PetscStackPop;
720:     /* make sure user returned a correct Jacobian and preconditioner */
723:   }
724:   if (imex) {
725:     if (!ijacobian) {  /* system was written as Udot = G(t,U) */
726:       MatZeroEntries(*A);
727:       MatShift(*A,shift);
728:       if (*A != *B) {
729:         MatZeroEntries(*B);
730:         MatShift(*B,shift);
731:       }
732:       *flg = SAME_PRECONDITIONER;
733:     }
734:   } else {
735:     if (!ijacobian) {
736:       TSComputeRHSJacobian(ts,t,U,A,B,flg);
737:       MatScale(*A,-1);
738:       MatShift(*A,shift);
739:       if (*A != *B) {
740:         MatScale(*B,-1);
741:         MatShift(*B,shift);
742:       }
743:     } else if (rhsjacobian) {
744:       Mat          Arhs,Brhs;
745:       MatStructure axpy,flg2 = DIFFERENT_NONZERO_PATTERN;
746:       TSGetRHSMats_Private(ts,&Arhs,&Brhs);
747:       TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
748:       axpy = (*flg == flg2) ? SAME_NONZERO_PATTERN : DIFFERENT_NONZERO_PATTERN;
749:       MatAXPY(*A,-1,Arhs,axpy);
750:       if (*A != *B) {
751:         MatAXPY(*B,-1,Brhs,axpy);
752:       }
753:       *flg = PetscMin(*flg,flg2);
754:     }
755:   }

757:   ts->ijacobian.time = t;
758:   ts->ijacobian.X    = U;
759:   ts->ijacobian.Xdot = Udot;

761:   PetscObjectStateQuery((PetscObject)U,&ts->ijacobian.Xstate);
762:   PetscObjectStateQuery((PetscObject)Udot,&ts->ijacobian.Xdotstate);

764:   ts->ijacobian.shift      = shift;
765:   ts->ijacobian.imex       = imex;
766:   ts->ijacobian.mstructure = *flg;

768:   PetscLogEventEnd(TS_JacobianEval,ts,U,*A,*B);
769:   return(0);
770: }

774: /*@C
775:     TSSetRHSFunction - Sets the routine for evaluating the function,
776:     where U_t = G(t,u).

778:     Logically Collective on TS

780:     Input Parameters:
781: +   ts - the TS context obtained from TSCreate()
782: .   r - vector to put the computed right hand side (or NULL to have it created)
783: .   f - routine for evaluating the right-hand-side function
784: -   ctx - [optional] user-defined context for private data for the
785:           function evaluation routine (may be NULL)

787:     Calling sequence of func:
788: $     func (TS ts,PetscReal t,Vec u,Vec F,void *ctx);

790: +   t - current timestep
791: .   u - input vector
792: .   F - function vector
793: -   ctx - [optional] user-defined function context

795:     Level: beginner

797: .keywords: TS, timestep, set, right-hand-side, function

799: .seealso: TSSetRHSJacobian(), TSSetIJacobian()
800: @*/
801: PetscErrorCode  TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
802: {
804:   SNES           snes;
805:   Vec            ralloc = NULL;
806:   DM             dm;


812:   TSGetDM(ts,&dm);
813:   DMTSSetRHSFunction(dm,f,ctx);
814:   TSGetSNES(ts,&snes);
815:   if (!r && !ts->dm && ts->vec_sol) {
816:     VecDuplicate(ts->vec_sol,&ralloc);
817:     r    = ralloc;
818:   }
819:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
820:   VecDestroy(&ralloc);
821:   return(0);
822: }

826: /*@C
827:     TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE

829:     Logically Collective on TS

831:     Input Parameters:
832: +   ts - the TS context obtained from TSCreate()
833: .   f - routine for evaluating the solution
834: -   ctx - [optional] user-defined context for private data for the
835:           function evaluation routine (may be NULL)

837:     Calling sequence of func:
838: $     func (TS ts,PetscReal t,Vec u,void *ctx);

840: +   t - current timestep
841: .   u - output vector
842: -   ctx - [optional] user-defined function context

844:     Notes:
845:     This routine is used for testing accuracy of time integration schemes when you already know the solution.
846:     If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
847:     create closed-form solutions with non-physical forcing terms.

849:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

851:     Level: beginner

853: .keywords: TS, timestep, set, right-hand-side, function

855: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction()
856: @*/
857: PetscErrorCode  TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
858: {
860:   DM             dm;

864:   TSGetDM(ts,&dm);
865:   DMTSSetSolutionFunction(dm,f,ctx);
866:   return(0);
867: }

871: /*@C
872:     TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE

874:     Logically Collective on TS

876:     Input Parameters:
877: +   ts - the TS context obtained from TSCreate()
878: .   f - routine for evaluating the forcing function
879: -   ctx - [optional] user-defined context for private data for the
880:           function evaluation routine (may be NULL)

882:     Calling sequence of func:
883: $     func (TS ts,PetscReal t,Vec u,void *ctx);

885: +   t - current timestep
886: .   u - output vector
887: -   ctx - [optional] user-defined function context

889:     Notes:
890:     This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
891:     create closed-form solutions with a non-physical forcing term.

893:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

895:     Level: beginner

897: .keywords: TS, timestep, set, right-hand-side, function

899: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
900: @*/
901: PetscErrorCode  TSSetForcingFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
902: {
904:   DM             dm;

908:   TSGetDM(ts,&dm);
909:   DMTSSetForcingFunction(dm,f,ctx);
910:   return(0);
911: }

915: /*@C
916:    TSSetRHSJacobian - Sets the function to compute the Jacobian of F,
917:    where U_t = G(U,t), as well as the location to store the matrix.

919:    Logically Collective on TS

921:    Input Parameters:
922: +  ts  - the TS context obtained from TSCreate()
923: .  Amat - (approximate) Jacobian matrix
924: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
925: .  f   - the Jacobian evaluation routine
926: -  ctx - [optional] user-defined context for private data for the
927:          Jacobian evaluation routine (may be NULL)

929:    Calling sequence of func:
930: $     func (TS ts,PetscReal t,Vec u,Mat *A,Mat *B,MatStructure *flag,void *ctx);

932: +  t - current timestep
933: .  u - input vector
934: .  Amat - (approximate) Jacobian matrix
935: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
936: .  flag - flag indicating information about the preconditioner matrix
937:           structure (same as flag in KSPSetOperators())
938: -  ctx - [optional] user-defined context for matrix evaluation routine

940:    Notes:
941:    See KSPSetOperators() for important information about setting the flag
942:    output parameter in the routine func().  Be sure to read this information!

944:    The routine func() takes Mat * as the matrix arguments rather than Mat.
945:    This allows the matrix evaluation routine to replace A and/or B with a
946:    completely new matrix structure (not just different matrix elements)
947:    when appropriate, for instance, if the nonzero structure is changing
948:    throughout the global iterations.

950:    Level: beginner

952: .keywords: TS, timestep, set, right-hand-side, Jacobian

954: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction()

956: @*/
957: PetscErrorCode  TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
958: {
960:   SNES           snes;
961:   DM             dm;
962:   TSIJacobian    ijacobian;


971:   TSGetDM(ts,&dm);
972:   DMTSSetRHSJacobian(dm,f,ctx);
973:   DMTSGetIJacobian(dm,&ijacobian,NULL);

975:   TSGetSNES(ts,&snes);
976:   if (!ijacobian) {
977:     SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
978:   }
979:   if (Amat) {
980:     PetscObjectReference((PetscObject)Amat);
981:     MatDestroy(&ts->Arhs);

983:     ts->Arhs = Amat;
984:   }
985:   if (Pmat) {
986:     PetscObjectReference((PetscObject)Pmat);
987:     MatDestroy(&ts->Brhs);

989:     ts->Brhs = Pmat;
990:   }
991:   return(0);
992: }


997: /*@C
998:    TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.

1000:    Logically Collective on TS

1002:    Input Parameters:
1003: +  ts  - the TS context obtained from TSCreate()
1004: .  r   - vector to hold the residual (or NULL to have it created internally)
1005: .  f   - the function evaluation routine
1006: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1008:    Calling sequence of f:
1009: $  f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);

1011: +  t   - time at step/stage being solved
1012: .  u   - state vector
1013: .  u_t - time derivative of state vector
1014: .  F   - function vector
1015: -  ctx - [optional] user-defined context for matrix evaluation routine

1017:    Important:
1018:    The user MUST call either this routine, TSSetRHSFunction().  This routine must be used when not solving an ODE, for example a DAE.

1020:    Level: beginner

1022: .keywords: TS, timestep, set, DAE, Jacobian

1024: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1025: @*/
1026: PetscErrorCode  TSSetIFunction(TS ts,Vec res,TSIFunction f,void *ctx)
1027: {
1029:   SNES           snes;
1030:   Vec            resalloc = NULL;
1031:   DM             dm;


1037:   TSGetDM(ts,&dm);
1038:   DMTSSetIFunction(dm,f,ctx);

1040:   TSGetSNES(ts,&snes);
1041:   if (!res && !ts->dm && ts->vec_sol) {
1042:     VecDuplicate(ts->vec_sol,&resalloc);
1043:     res  = resalloc;
1044:   }
1045:   SNESSetFunction(snes,res,SNESTSFormFunction,ts);
1046:   VecDestroy(&resalloc);
1047:   return(0);
1048: }

1052: /*@C
1053:    TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1055:    Not Collective

1057:    Input Parameter:
1058: .  ts - the TS context

1060:    Output Parameter:
1061: +  r - vector to hold residual (or NULL)
1062: .  func - the function to compute residual (or NULL)
1063: -  ctx - the function context (or NULL)

1065:    Level: advanced

1067: .keywords: TS, nonlinear, get, function

1069: .seealso: TSSetIFunction(), SNESGetFunction()
1070: @*/
1071: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1072: {
1074:   SNES           snes;
1075:   DM             dm;

1079:   TSGetSNES(ts,&snes);
1080:   SNESGetFunction(snes,r,NULL,NULL);
1081:   TSGetDM(ts,&dm);
1082:   DMTSGetIFunction(dm,func,ctx);
1083:   return(0);
1084: }

1088: /*@C
1089:    TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.

1091:    Not Collective

1093:    Input Parameter:
1094: .  ts - the TS context

1096:    Output Parameter:
1097: +  r - vector to hold computed right hand side (or NULL)
1098: .  func - the function to compute right hand side (or NULL)
1099: -  ctx - the function context (or NULL)

1101:    Level: advanced

1103: .keywords: TS, nonlinear, get, function

1105: .seealso: TSSetRhsfunction(), SNESGetFunction()
1106: @*/
1107: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1108: {
1110:   SNES           snes;
1111:   DM             dm;

1115:   TSGetSNES(ts,&snes);
1116:   SNESGetFunction(snes,r,NULL,NULL);
1117:   TSGetDM(ts,&dm);
1118:   DMTSGetRHSFunction(dm,func,ctx);
1119:   return(0);
1120: }

1124: /*@C
1125:    TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1126:         you provided with TSSetIFunction().

1128:    Logically Collective on TS

1130:    Input Parameters:
1131: +  ts  - the TS context obtained from TSCreate()
1132: .  Amat - (approximate) Jacobian matrix
1133: .  Pmat - matrix used to compute preconditioner (usually the same as Amat)
1134: .  f   - the Jacobian evaluation routine
1135: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1137:    Calling sequence of f:
1138: $  f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat *Amat,Mat *Pmat,MatStructure *flag,void *ctx);

1140: +  t    - time at step/stage being solved
1141: .  U    - state vector
1142: .  U_t  - time derivative of state vector
1143: .  a    - shift
1144: .  Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1145: .  Pmat - matrix used for constructing preconditioner, usually the same as Amat
1146: .  flag - flag indicating information about the preconditioner matrix
1147:           structure (same as flag in KSPSetOperators())
1148: -  ctx  - [optional] user-defined context for matrix evaluation routine

1150:    Notes:
1151:    The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.

1153:    The matrix dF/dU + a*dF/dU_t you provide turns out to be
1154:    the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1155:    The time integrator internally approximates U_t by W+a*U where the positive "shift"
1156:    a and vector W depend on the integration method, step size, and past states. For example with
1157:    the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1158:    W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt

1160:    Level: beginner

1162: .keywords: TS, timestep, DAE, Jacobian

1164: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault()

1166: @*/
1167: PetscErrorCode  TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1168: {
1170:   SNES           snes;
1171:   DM             dm;


1180:   TSGetDM(ts,&dm);
1181:   DMTSSetIJacobian(dm,f,ctx);

1183:   TSGetSNES(ts,&snes);
1184:   SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1185:   return(0);
1186: }

1190: /*@C
1191:   TSLoad - Loads a KSP that has been stored in binary  with KSPView().

1193:   Collective on PetscViewer

1195:   Input Parameters:
1196: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1197:            some related function before a call to TSLoad().
1198: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()

1200:    Level: intermediate

1202:   Notes:
1203:    The type is determined by the data in the file, any type set into the TS before this call is ignored.

1205:   Notes for advanced users:
1206:   Most users should not need to know the details of the binary storage
1207:   format, since TSLoad() and TSView() completely hide these details.
1208:   But for anyone who's interested, the standard binary matrix storage
1209:   format is
1210: .vb
1211:      has not yet been determined
1212: .ve

1214: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1215: @*/
1216: PetscErrorCode  TSLoad(TS ts, PetscViewer viewer)
1217: {
1219:   PetscBool      isbinary;
1220:   PetscInt       classid;
1221:   char           type[256];
1222:   DMTS           sdm;
1223:   DM             dm;

1228:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1229:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1231:   PetscViewerBinaryRead(viewer,&classid,1,PETSC_INT);
1232:   if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1233:   PetscViewerBinaryRead(viewer,type,256,PETSC_CHAR);
1234:   TSSetType(ts, type);
1235:   if (ts->ops->load) {
1236:     (*ts->ops->load)(ts,viewer);
1237:   }
1238:   DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1239:   DMLoad(dm,viewer);
1240:   TSSetDM(ts,dm);
1241:   DMCreateGlobalVector(ts->dm,&ts->vec_sol);
1242:   VecLoad(ts->vec_sol,viewer);
1243:   DMGetDMTS(ts->dm,&sdm);
1244:   DMTSLoad(sdm,viewer);
1245:   return(0);
1246: }

1248: #include <petscdraw.h>
1249: #if defined(PETSC_HAVE_AMS)
1250: #include <petscviewerams.h>
1251: #endif
1254: /*@C
1255:     TSView - Prints the TS data structure.

1257:     Collective on TS

1259:     Input Parameters:
1260: +   ts - the TS context obtained from TSCreate()
1261: -   viewer - visualization context

1263:     Options Database Key:
1264: .   -ts_view - calls TSView() at end of TSStep()

1266:     Notes:
1267:     The available visualization contexts include
1268: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
1269: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
1270:          output where only the first processor opens
1271:          the file.  All other processors send their
1272:          data to the first processor to print.

1274:     The user can open an alternative visualization context with
1275:     PetscViewerASCIIOpen() - output to a specified file.

1277:     Level: beginner

1279: .keywords: TS, timestep, view

1281: .seealso: PetscViewerASCIIOpen()
1282: @*/
1283: PetscErrorCode  TSView(TS ts,PetscViewer viewer)
1284: {
1286:   TSType         type;
1287:   PetscBool      iascii,isstring,isundials,isbinary,isdraw;
1288:   DMTS           sdm;
1289: #if defined(PETSC_HAVE_AMS)
1290:   PetscBool      isams;
1291: #endif

1295:   if (!viewer) {
1296:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
1297:   }

1301:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
1302:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
1303:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1304:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
1305: #if defined(PETSC_HAVE_AMS)
1306:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERAMS,&isams);
1307: #endif
1308:   if (iascii) {
1309:     PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer,"TS Object");
1310:     PetscViewerASCIIPrintf(viewer,"  maximum steps=%D\n",ts->max_steps);
1311:     PetscViewerASCIIPrintf(viewer,"  maximum time=%G\n",ts->max_time);
1312:     if (ts->problem_type == TS_NONLINEAR) {
1313:       PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solver iterations=%D\n",ts->snes_its);
1314:       PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solve failures=%D\n",ts->num_snes_failures);
1315:     }
1316:     PetscViewerASCIIPrintf(viewer,"  total number of linear solver iterations=%D\n",ts->ksp_its);
1317:     PetscViewerASCIIPrintf(viewer,"  total number of rejected steps=%D\n",ts->reject);
1318:     DMGetDMTS(ts->dm,&sdm);
1319:     DMTSView(sdm,viewer);
1320:     if (ts->ops->view) {
1321:       PetscViewerASCIIPushTab(viewer);
1322:       (*ts->ops->view)(ts,viewer);
1323:       PetscViewerASCIIPopTab(viewer);
1324:     }
1325:   } else if (isstring) {
1326:     TSGetType(ts,&type);
1327:     PetscViewerStringSPrintf(viewer," %-7.7s",type);
1328:   } else if (isbinary) {
1329:     PetscInt    classid = TS_FILE_CLASSID;
1330:     MPI_Comm    comm;
1331:     PetscMPIInt rank;
1332:     char        type[256];

1334:     PetscObjectGetComm((PetscObject)ts,&comm);
1335:     MPI_Comm_rank(comm,&rank);
1336:     if (!rank) {
1337:       PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT,PETSC_FALSE);
1338:       PetscStrncpy(type,((PetscObject)ts)->type_name,256);
1339:       PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR,PETSC_FALSE);
1340:     }
1341:     if (ts->ops->view) {
1342:       (*ts->ops->view)(ts,viewer);
1343:     }
1344:     DMView(ts->dm,viewer);
1345:     VecView(ts->vec_sol,viewer);
1346:     DMGetDMTS(ts->dm,&sdm);
1347:     DMTSView(sdm,viewer);
1348:   } else if (isdraw) {
1349:     PetscDraw draw;
1350:     char      str[36];
1351:     PetscReal x,y,bottom,h;

1353:     PetscViewerDrawGetDraw(viewer,0,&draw);
1354:     PetscDrawGetCurrentPoint(draw,&x,&y);
1355:     PetscStrcpy(str,"TS: ");
1356:     PetscStrcat(str,((PetscObject)ts)->type_name);
1357:     PetscDrawBoxedString(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
1358:     bottom = y - h;
1359:     PetscDrawPushCurrentPoint(draw,x,bottom);
1360:     if (ts->ops->view) {
1361:       (*ts->ops->view)(ts,viewer);
1362:     }
1363:     PetscDrawPopCurrentPoint(draw);
1364: #if defined(PETSC_HAVE_AMS)
1365:   } else if (isams) {
1366:     if (((PetscObject)ts)->amsmem == -1) {
1367:       PetscObjectViewAMS((PetscObject)ts,viewer);
1368:       PetscStackCallAMS(AMS_Memory_take_access,(((PetscObject)ts)->amsmem));
1369:       PetscStackCallAMS(AMS_Memory_add_field,(((PetscObject)ts)->amsmem,"time step",&ts->steps,1,AMS_INT,AMS_READ,AMS_COMMON,AMS_REDUCT_UNDEF));
1370:       PetscStackCallAMS(AMS_Memory_add_field,(((PetscObject)ts)->amsmem,"time",&ts->ptime,1,AMS_DOUBLE,AMS_READ,AMS_COMMON,AMS_REDUCT_UNDEF));
1371:       PetscStackCallAMS(AMS_Memory_grant_access,(((PetscObject)ts)->amsmem));
1372:     }
1373:     if (ts->ops->view) {
1374:       (*ts->ops->view)(ts,viewer);
1375:     }
1376: #endif
1377:   }

1379:   PetscViewerASCIIPushTab(viewer);
1380:   PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
1381:   PetscViewerASCIIPopTab(viewer);
1382:   return(0);
1383: }


1388: /*@
1389:    TSSetApplicationContext - Sets an optional user-defined context for
1390:    the timesteppers.

1392:    Logically Collective on TS

1394:    Input Parameters:
1395: +  ts - the TS context obtained from TSCreate()
1396: -  usrP - optional user context

1398:    Level: intermediate

1400: .keywords: TS, timestep, set, application, context

1402: .seealso: TSGetApplicationContext()
1403: @*/
1404: PetscErrorCode  TSSetApplicationContext(TS ts,void *usrP)
1405: {
1408:   ts->user = usrP;
1409:   return(0);
1410: }

1414: /*@
1415:     TSGetApplicationContext - Gets the user-defined context for the
1416:     timestepper.

1418:     Not Collective

1420:     Input Parameter:
1421: .   ts - the TS context obtained from TSCreate()

1423:     Output Parameter:
1424: .   usrP - user context

1426:     Level: intermediate

1428: .keywords: TS, timestep, get, application, context

1430: .seealso: TSSetApplicationContext()
1431: @*/
1432: PetscErrorCode  TSGetApplicationContext(TS ts,void *usrP)
1433: {
1436:   *(void**)usrP = ts->user;
1437:   return(0);
1438: }

1442: /*@
1443:    TSGetTimeStepNumber - Gets the number of time steps completed.

1445:    Not Collective

1447:    Input Parameter:
1448: .  ts - the TS context obtained from TSCreate()

1450:    Output Parameter:
1451: .  iter - number of steps completed so far

1453:    Level: intermediate

1455: .keywords: TS, timestep, get, iteration, number
1456: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStep()
1457: @*/
1458: PetscErrorCode  TSGetTimeStepNumber(TS ts,PetscInt *iter)
1459: {
1463:   *iter = ts->steps;
1464:   return(0);
1465: }

1469: /*@
1470:    TSSetInitialTimeStep - Sets the initial timestep to be used,
1471:    as well as the initial time.

1473:    Logically Collective on TS

1475:    Input Parameters:
1476: +  ts - the TS context obtained from TSCreate()
1477: .  initial_time - the initial time
1478: -  time_step - the size of the timestep

1480:    Level: intermediate

1482: .seealso: TSSetTimeStep(), TSGetTimeStep()

1484: .keywords: TS, set, initial, timestep
1485: @*/
1486: PetscErrorCode  TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
1487: {

1492:   TSSetTimeStep(ts,time_step);
1493:   TSSetTime(ts,initial_time);
1494:   return(0);
1495: }

1499: /*@
1500:    TSSetTimeStep - Allows one to reset the timestep at any time,
1501:    useful for simple pseudo-timestepping codes.

1503:    Logically Collective on TS

1505:    Input Parameters:
1506: +  ts - the TS context obtained from TSCreate()
1507: -  time_step - the size of the timestep

1509:    Level: intermediate

1511: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()

1513: .keywords: TS, set, timestep
1514: @*/
1515: PetscErrorCode  TSSetTimeStep(TS ts,PetscReal time_step)
1516: {
1520:   ts->time_step      = time_step;
1521:   ts->time_step_orig = time_step;
1522:   return(0);
1523: }

1527: /*@
1528:    TSSetExactFinalTime - Determines whether to adapt the final time step to
1529:      match the exact final time, interpolate solution to the exact final time,
1530:      or just return at the final time TS computed.

1532:   Logically Collective on TS

1534:    Input Parameter:
1535: +   ts - the time-step context
1536: -   eftopt - exact final time option

1538:    Level: beginner

1540: .seealso: TSExactFinalTimeOption
1541: @*/
1542: PetscErrorCode  TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
1543: {
1547:   ts->exact_final_time = eftopt;
1548:   return(0);
1549: }

1553: /*@
1554:    TSGetTimeStep - Gets the current timestep size.

1556:    Not Collective

1558:    Input Parameter:
1559: .  ts - the TS context obtained from TSCreate()

1561:    Output Parameter:
1562: .  dt - the current timestep size

1564:    Level: intermediate

1566: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()

1568: .keywords: TS, get, timestep
1569: @*/
1570: PetscErrorCode  TSGetTimeStep(TS ts,PetscReal *dt)
1571: {
1575:   *dt = ts->time_step;
1576:   return(0);
1577: }

1581: /*@
1582:    TSGetSolution - Returns the solution at the present timestep. It
1583:    is valid to call this routine inside the function that you are evaluating
1584:    in order to move to the new timestep. This vector not changed until
1585:    the solution at the next timestep has been calculated.

1587:    Not Collective, but Vec returned is parallel if TS is parallel

1589:    Input Parameter:
1590: .  ts - the TS context obtained from TSCreate()

1592:    Output Parameter:
1593: .  v - the vector containing the solution

1595:    Level: intermediate

1597: .seealso: TSGetTimeStep()

1599: .keywords: TS, timestep, get, solution
1600: @*/
1601: PetscErrorCode  TSGetSolution(TS ts,Vec *v)
1602: {
1606:   *v = ts->vec_sol;
1607:   return(0);
1608: }

1610: /* ----- Routines to initialize and destroy a timestepper ---- */
1613: /*@
1614:   TSSetProblemType - Sets the type of problem to be solved.

1616:   Not collective

1618:   Input Parameters:
1619: + ts   - The TS
1620: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1621: .vb
1622:          U_t - A U = 0      (linear)
1623:          U_t - A(t) U = 0   (linear)
1624:          F(t,U,U_t) = 0     (nonlinear)
1625: .ve

1627:    Level: beginner

1629: .keywords: TS, problem type
1630: .seealso: TSSetUp(), TSProblemType, TS
1631: @*/
1632: PetscErrorCode  TSSetProblemType(TS ts, TSProblemType type)
1633: {

1638:   ts->problem_type = type;
1639:   if (type == TS_LINEAR) {
1640:     SNES snes;
1641:     TSGetSNES(ts,&snes);
1642:     SNESSetType(snes,SNESKSPONLY);
1643:   }
1644:   return(0);
1645: }

1649: /*@C
1650:   TSGetProblemType - Gets the type of problem to be solved.

1652:   Not collective

1654:   Input Parameter:
1655: . ts   - The TS

1657:   Output Parameter:
1658: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
1659: .vb
1660:          M U_t = A U
1661:          M(t) U_t = A(t) U
1662:          F(t,U,U_t)
1663: .ve

1665:    Level: beginner

1667: .keywords: TS, problem type
1668: .seealso: TSSetUp(), TSProblemType, TS
1669: @*/
1670: PetscErrorCode  TSGetProblemType(TS ts, TSProblemType *type)
1671: {
1675:   *type = ts->problem_type;
1676:   return(0);
1677: }

1681: /*@
1682:    TSSetUp - Sets up the internal data structures for the later use
1683:    of a timestepper.

1685:    Collective on TS

1687:    Input Parameter:
1688: .  ts - the TS context obtained from TSCreate()

1690:    Notes:
1691:    For basic use of the TS solvers the user need not explicitly call
1692:    TSSetUp(), since these actions will automatically occur during
1693:    the call to TSStep().  However, if one wishes to control this
1694:    phase separately, TSSetUp() should be called after TSCreate()
1695:    and optional routines of the form TSSetXXX(), but before TSStep().

1697:    Level: advanced

1699: .keywords: TS, timestep, setup

1701: .seealso: TSCreate(), TSStep(), TSDestroy()
1702: @*/
1703: PetscErrorCode  TSSetUp(TS ts)
1704: {
1706:   DM             dm;
1707:   PetscErrorCode (*func)(SNES,Vec,Vec,void*);
1708:   PetscErrorCode (*jac)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);
1709:   TSIJacobian    ijac;
1710:   TSRHSJacobian  rhsjac;

1714:   if (ts->setupcalled) return(0);

1716:   if (!((PetscObject)ts)->type_name) {
1717:     TSSetType(ts,TSEULER);
1718:   }

1720:   if (!ts->vec_sol) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");

1722:   TSGetAdapt(ts,&ts->adapt);

1724:   if (ts->ops->setup) {
1725:     (*ts->ops->setup)(ts);
1726:   }

1728:   /* in the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
1729:    to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
1730:    */
1731:   TSGetDM(ts,&dm);
1732:   DMSNESGetFunction(dm,&func,NULL);
1733:   if (!func) {
1734:     ierr =DMSNESSetFunction(dm,SNESTSFormFunction,ts);
1735:   }
1736:   /* if the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
1737:      Otherwise, the SNES will use coloring internally to form the Jacobian.
1738:    */
1739:   DMSNESGetJacobian(dm,&jac,NULL);
1740:   DMTSGetIJacobian(dm,&ijac,NULL);
1741:   DMTSGetRHSJacobian(dm,&rhsjac,NULL);
1742:   if (!jac && (ijac || rhsjac)) {
1743:     DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
1744:   }
1745:   ts->setupcalled = PETSC_TRUE;
1746:   return(0);
1747: }

1751: /*@
1752:    TSReset - Resets a TS context and removes any allocated Vecs and Mats.

1754:    Collective on TS

1756:    Input Parameter:
1757: .  ts - the TS context obtained from TSCreate()

1759:    Level: beginner

1761: .keywords: TS, timestep, reset

1763: .seealso: TSCreate(), TSSetup(), TSDestroy()
1764: @*/
1765: PetscErrorCode  TSReset(TS ts)
1766: {

1771:   if (ts->ops->reset) {
1772:     (*ts->ops->reset)(ts);
1773:   }
1774:   if (ts->snes) {SNESReset(ts->snes);}

1776:   MatDestroy(&ts->Arhs);
1777:   MatDestroy(&ts->Brhs);
1778:   VecDestroy(&ts->Frhs);
1779:   VecDestroy(&ts->vec_sol);
1780:   VecDestroy(&ts->vatol);
1781:   VecDestroy(&ts->vrtol);
1782:   VecDestroyVecs(ts->nwork,&ts->work);

1784:   ts->setupcalled = PETSC_FALSE;
1785:   return(0);
1786: }

1790: /*@
1791:    TSDestroy - Destroys the timestepper context that was created
1792:    with TSCreate().

1794:    Collective on TS

1796:    Input Parameter:
1797: .  ts - the TS context obtained from TSCreate()

1799:    Level: beginner

1801: .keywords: TS, timestepper, destroy

1803: .seealso: TSCreate(), TSSetUp(), TSSolve()
1804: @*/
1805: PetscErrorCode  TSDestroy(TS *ts)
1806: {

1810:   if (!*ts) return(0);
1812:   if (--((PetscObject)(*ts))->refct > 0) {*ts = 0; return(0);}

1814:   TSReset((*ts));

1816:   /* if memory was published with AMS then destroy it */
1817:   PetscObjectAMSViewOff((PetscObject)*ts);
1818:   if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}

1820:   TSAdaptDestroy(&(*ts)->adapt);
1821:   SNESDestroy(&(*ts)->snes);
1822:   DMDestroy(&(*ts)->dm);
1823:   TSMonitorCancel((*ts));

1825:   PetscHeaderDestroy(ts);
1826:   return(0);
1827: }

1831: /*@
1832:    TSGetSNES - Returns the SNES (nonlinear solver) associated with
1833:    a TS (timestepper) context. Valid only for nonlinear problems.

1835:    Not Collective, but SNES is parallel if TS is parallel

1837:    Input Parameter:
1838: .  ts - the TS context obtained from TSCreate()

1840:    Output Parameter:
1841: .  snes - the nonlinear solver context

1843:    Notes:
1844:    The user can then directly manipulate the SNES context to set various
1845:    options, etc.  Likewise, the user can then extract and manipulate the
1846:    KSP, KSP, and PC contexts as well.

1848:    TSGetSNES() does not work for integrators that do not use SNES; in
1849:    this case TSGetSNES() returns NULL in snes.

1851:    Level: beginner

1853: .keywords: timestep, get, SNES
1854: @*/
1855: PetscErrorCode  TSGetSNES(TS ts,SNES *snes)
1856: {

1862:   if (!ts->snes) {
1863:     SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
1864:     SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
1865:     PetscLogObjectParent(ts,ts->snes);
1866:     PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
1867:     if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
1868:     if (ts->problem_type == TS_LINEAR) {
1869:       SNESSetType(ts->snes,SNESKSPONLY);
1870:     }
1871:   }
1872:   *snes = ts->snes;
1873:   return(0);
1874: }

1878: /*@
1879:    TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context

1881:    Collective

1883:    Input Parameter:
1884: +  ts - the TS context obtained from TSCreate()
1885: -  snes - the nonlinear solver context

1887:    Notes:
1888:    Most users should have the TS created by calling TSGetSNES()

1890:    Level: developer

1892: .keywords: timestep, set, SNES
1893: @*/
1894: PetscErrorCode TSSetSNES(TS ts,SNES snes)
1895: {
1897:   PetscErrorCode (*func)(SNES,Vec,Mat*,Mat*,MatStructure*,void*);

1902:   PetscObjectReference((PetscObject)snes);
1903:   SNESDestroy(&ts->snes);

1905:   ts->snes = snes;

1907:   SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
1908:   SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
1909:   if (func == SNESTSFormJacobian) {
1910:     SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
1911:   }
1912:   return(0);
1913: }

1917: /*@
1918:    TSGetKSP - Returns the KSP (linear solver) associated with
1919:    a TS (timestepper) context.

1921:    Not Collective, but KSP is parallel if TS is parallel

1923:    Input Parameter:
1924: .  ts - the TS context obtained from TSCreate()

1926:    Output Parameter:
1927: .  ksp - the nonlinear solver context

1929:    Notes:
1930:    The user can then directly manipulate the KSP context to set various
1931:    options, etc.  Likewise, the user can then extract and manipulate the
1932:    KSP and PC contexts as well.

1934:    TSGetKSP() does not work for integrators that do not use KSP;
1935:    in this case TSGetKSP() returns NULL in ksp.

1937:    Level: beginner

1939: .keywords: timestep, get, KSP
1940: @*/
1941: PetscErrorCode  TSGetKSP(TS ts,KSP *ksp)
1942: {
1944:   SNES           snes;

1949:   if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
1950:   if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
1951:   TSGetSNES(ts,&snes);
1952:   SNESGetKSP(snes,ksp);
1953:   return(0);
1954: }

1956: /* ----------- Routines to set solver parameters ---------- */

1960: /*@
1961:    TSGetDuration - Gets the maximum number of timesteps to use and
1962:    maximum time for iteration.

1964:    Not Collective

1966:    Input Parameters:
1967: +  ts       - the TS context obtained from TSCreate()
1968: .  maxsteps - maximum number of iterations to use, or NULL
1969: -  maxtime  - final time to iterate to, or NULL

1971:    Level: intermediate

1973: .keywords: TS, timestep, get, maximum, iterations, time
1974: @*/
1975: PetscErrorCode  TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
1976: {
1979:   if (maxsteps) {
1981:     *maxsteps = ts->max_steps;
1982:   }
1983:   if (maxtime) {
1985:     *maxtime = ts->max_time;
1986:   }
1987:   return(0);
1988: }

1992: /*@
1993:    TSSetDuration - Sets the maximum number of timesteps to use and
1994:    maximum time for iteration.

1996:    Logically Collective on TS

1998:    Input Parameters:
1999: +  ts - the TS context obtained from TSCreate()
2000: .  maxsteps - maximum number of iterations to use
2001: -  maxtime - final time to iterate to

2003:    Options Database Keys:
2004: .  -ts_max_steps <maxsteps> - Sets maxsteps
2005: .  -ts_final_time <maxtime> - Sets maxtime

2007:    Notes:
2008:    The default maximum number of iterations is 5000. Default time is 5.0

2010:    Level: intermediate

2012: .keywords: TS, timestep, set, maximum, iterations

2014: .seealso: TSSetExactFinalTime()
2015: @*/
2016: PetscErrorCode  TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
2017: {
2022:   if (maxsteps >= 0) ts->max_steps = maxsteps;
2023:   if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
2024:   return(0);
2025: }

2029: /*@
2030:    TSSetSolution - Sets the initial solution vector
2031:    for use by the TS routines.

2033:    Logically Collective on TS and Vec

2035:    Input Parameters:
2036: +  ts - the TS context obtained from TSCreate()
2037: -  u - the solution vector

2039:    Level: beginner

2041: .keywords: TS, timestep, set, solution, initial conditions
2042: @*/
2043: PetscErrorCode  TSSetSolution(TS ts,Vec u)
2044: {
2046:   DM             dm;

2051:   PetscObjectReference((PetscObject)u);
2052:   VecDestroy(&ts->vec_sol);

2054:   ts->vec_sol = u;

2056:   TSGetDM(ts,&dm);
2057:   DMShellSetGlobalVector(dm,u);
2058:   return(0);
2059: }

2063: /*@C
2064:   TSSetPreStep - Sets the general-purpose function
2065:   called once at the beginning of each time step.

2067:   Logically Collective on TS

2069:   Input Parameters:
2070: + ts   - The TS context obtained from TSCreate()
2071: - func - The function

2073:   Calling sequence of func:
2074: . func (TS ts);

2076:   Level: intermediate

2078:   Note:
2079:   If a step is rejected, TSStep() will call this routine again before each attempt.
2080:   The last completed time step number can be queried using TSGetTimeStepNumber(), the
2081:   size of the step being attempted can be obtained using TSGetTimeStep().

2083: .keywords: TS, timestep
2084: .seealso: TSSetPreStage(), TSSetPostStep(), TSStep()
2085: @*/
2086: PetscErrorCode  TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
2087: {
2090:   ts->prestep = func;
2091:   return(0);
2092: }

2096: /*@
2097:   TSPreStep - Runs the user-defined pre-step function.

2099:   Collective on TS

2101:   Input Parameters:
2102: . ts   - The TS context obtained from TSCreate()

2104:   Notes:
2105:   TSPreStep() is typically used within time stepping implementations,
2106:   so most users would not generally call this routine themselves.

2108:   Level: developer

2110: .keywords: TS, timestep
2111: .seealso: TSSetPreStep(), TSPreStage(), TSPostStep()
2112: @*/
2113: PetscErrorCode  TSPreStep(TS ts)
2114: {

2119:   if (ts->prestep) {
2120:     PetscStackCallStandard((*ts->prestep),(ts));
2121:   }
2122:   return(0);
2123: }

2127: /*@C
2128:   TSSetPreStage - Sets the general-purpose function
2129:   called once at the beginning of each stage.

2131:   Logically Collective on TS

2133:   Input Parameters:
2134: + ts   - The TS context obtained from TSCreate()
2135: - func - The function

2137:   Calling sequence of func:
2138: . PetscErrorCode func(TS ts, PetscReal stagetime);

2140:   Level: intermediate

2142:   Note:
2143:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
2144:   The time step number being computed can be queried using TSGetTimeStepNumber() and the total size of the step being
2145:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

2147: .keywords: TS, timestep
2148: .seealso: TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
2149: @*/
2150: PetscErrorCode  TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
2151: {
2154:   ts->prestage = func;
2155:   return(0);
2156: }

2160: /*@
2161:   TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()

2163:   Collective on TS

2165:   Input Parameters:
2166: . ts   - The TS context obtained from TSCreate()

2168:   Notes:
2169:   TSPreStage() is typically used within time stepping implementations,
2170:   most users would not generally call this routine themselves.

2172:   Level: developer

2174: .keywords: TS, timestep
2175: .seealso: TSSetPreStep(), TSPreStep(), TSPostStep()
2176: @*/
2177: PetscErrorCode  TSPreStage(TS ts, PetscReal stagetime)
2178: {

2183:   if (ts->prestage) {
2184:     PetscStackCallStandard((*ts->prestage),(ts,stagetime));
2185:   }
2186:   return(0);
2187: }

2191: /*@C
2192:   TSSetPostStep - Sets the general-purpose function
2193:   called once at the end of each time step.

2195:   Logically Collective on TS

2197:   Input Parameters:
2198: + ts   - The TS context obtained from TSCreate()
2199: - func - The function

2201:   Calling sequence of func:
2202: $ func (TS ts);

2204:   Level: intermediate

2206: .keywords: TS, timestep
2207: .seealso: TSSetPreStep(), TSSetPreStage(), TSGetTimeStep(), TSGetTimeStepNumber(), TSGetTime()
2208: @*/
2209: PetscErrorCode  TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
2210: {
2213:   ts->poststep = func;
2214:   return(0);
2215: }

2219: /*@
2220:   TSPostStep - Runs the user-defined post-step function.

2222:   Collective on TS

2224:   Input Parameters:
2225: . ts   - The TS context obtained from TSCreate()

2227:   Notes:
2228:   TSPostStep() is typically used within time stepping implementations,
2229:   so most users would not generally call this routine themselves.

2231:   Level: developer

2233: .keywords: TS, timestep
2234: @*/
2235: PetscErrorCode  TSPostStep(TS ts)
2236: {

2241:   if (ts->poststep) {
2242:     PetscStackCallStandard((*ts->poststep),(ts));
2243:   }
2244:   return(0);
2245: }

2247: /* ------------ Routines to set performance monitoring options ----------- */

2251: /*@C
2252:    TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
2253:    timestep to display the iteration's  progress.

2255:    Logically Collective on TS

2257:    Input Parameters:
2258: +  ts - the TS context obtained from TSCreate()
2259: .  monitor - monitoring routine
2260: .  mctx - [optional] user-defined context for private data for the
2261:              monitor routine (use NULL if no context is desired)
2262: -  monitordestroy - [optional] routine that frees monitor context
2263:           (may be NULL)

2265:    Calling sequence of monitor:
2266: $    int monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)

2268: +    ts - the TS context
2269: .    steps - iteration number (after the final time step the monitor routine is called with a step of -1, this is at the final time which may have
2270:                                been interpolated to)
2271: .    time - current time
2272: .    u - current iterate
2273: -    mctx - [optional] monitoring context

2275:    Notes:
2276:    This routine adds an additional monitor to the list of monitors that
2277:    already has been loaded.

2279:    Fortran notes: Only a single monitor function can be set for each TS object

2281:    Level: intermediate

2283: .keywords: TS, timestep, set, monitor

2285: .seealso: TSMonitorDefault(), TSMonitorCancel()
2286: @*/
2287: PetscErrorCode  TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
2288: {
2291:   if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
2292:   ts->monitor[ts->numbermonitors]          = monitor;
2293:   ts->monitordestroy[ts->numbermonitors]   = mdestroy;
2294:   ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
2295:   return(0);
2296: }

2300: /*@C
2301:    TSMonitorCancel - Clears all the monitors that have been set on a time-step object.

2303:    Logically Collective on TS

2305:    Input Parameters:
2306: .  ts - the TS context obtained from TSCreate()

2308:    Notes:
2309:    There is no way to remove a single, specific monitor.

2311:    Level: intermediate

2313: .keywords: TS, timestep, set, monitor

2315: .seealso: TSMonitorDefault(), TSMonitorSet()
2316: @*/
2317: PetscErrorCode  TSMonitorCancel(TS ts)
2318: {
2320:   PetscInt       i;

2324:   for (i=0; i<ts->numbermonitors; i++) {
2325:     if (ts->monitordestroy[i]) {
2326:       (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
2327:     }
2328:   }
2329:   ts->numbermonitors = 0;
2330:   return(0);
2331: }

2335: /*@
2336:    TSMonitorDefault - Sets the Default monitor

2338:    Level: intermediate

2340: .keywords: TS, set, monitor

2342: .seealso: TSMonitorDefault(), TSMonitorSet()
2343: @*/
2344: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,void *dummy)
2345: {
2347:   PetscViewer    viewer = dummy ? (PetscViewer) dummy : PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)ts));

2350:   PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
2351:   PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g\n",step,(double)ts->time_step,(double)ptime);
2352:   PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
2353:   return(0);
2354: }

2358: /*@
2359:    TSSetRetainStages - Request that all stages in the upcoming step be stored so that interpolation will be available.

2361:    Logically Collective on TS

2363:    Input Argument:
2364: .  ts - time stepping context

2366:    Output Argument:
2367: .  flg - PETSC_TRUE or PETSC_FALSE

2369:    Level: intermediate

2371: .keywords: TS, set

2373: .seealso: TSInterpolate(), TSSetPostStep()
2374: @*/
2375: PetscErrorCode TSSetRetainStages(TS ts,PetscBool flg)
2376: {
2379:   ts->retain_stages = flg;
2380:   return(0);
2381: }

2385: /*@
2386:    TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval

2388:    Collective on TS

2390:    Input Argument:
2391: +  ts - time stepping context
2392: -  t - time to interpolate to

2394:    Output Argument:
2395: .  U - state at given time

2397:    Notes:
2398:    The user should call TSSetRetainStages() before taking a step in which interpolation will be requested.

2400:    Level: intermediate

2402:    Developer Notes:
2403:    TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.

2405: .keywords: TS, set

2407: .seealso: TSSetRetainStages(), TSSetPostStep()
2408: @*/
2409: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
2410: {

2416:   if (t < ts->ptime - ts->time_step_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %G not in last time steps [%G,%G]",t,ts->ptime-ts->time_step_prev,ts->ptime);
2417:   if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
2418:   (*ts->ops->interpolate)(ts,t,U);
2419:   return(0);
2420: }

2424: /*@
2425:    TSStep - Steps one time step

2427:    Collective on TS

2429:    Input Parameter:
2430: .  ts - the TS context obtained from TSCreate()

2432:    Level: intermediate

2434:    Notes:
2435:    The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
2436:    be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.

2438:    This may over-step the final time provided in TSSetDuration() depending on the time-step used. TSSolve() interpolates to exactly the
2439:    time provided in TSSetDuration(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.

2441: .keywords: TS, timestep, solve

2443: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
2444: @*/
2445: PetscErrorCode  TSStep(TS ts)
2446: {
2447:   PetscReal      ptime_prev;

2452:   TSSetUp(ts);

2454:   ts->reason = TS_CONVERGED_ITERATING;
2455:   ptime_prev = ts->ptime;

2457:   PetscLogEventBegin(TS_Step,ts,0,0,0);
2458:   (*ts->ops->step)(ts);
2459:   PetscLogEventEnd(TS_Step,ts,0,0,0);

2461:   ts->time_step_prev = ts->ptime - ptime_prev;

2463:   if (ts->reason < 0) {
2464:     if (ts->errorifstepfailed) {
2465:       if (ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) {
2466:         SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
2467:       } else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
2468:     }
2469:   } else if (!ts->reason) {
2470:     if (ts->steps >= ts->max_steps)     ts->reason = TS_CONVERGED_ITS;
2471:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2472:   }
2473:   return(0);
2474: }

2478: /*@
2479:    TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.

2481:    Collective on TS

2483:    Input Arguments:
2484: +  ts - time stepping context
2485: .  order - desired order of accuracy
2486: -  done - whether the step was evaluated at this order (pass NULL to generate an error if not available)

2488:    Output Arguments:
2489: .  U - state at the end of the current step

2491:    Level: advanced

2493:    Notes:
2494:    This function cannot be called until all stages have been evaluated.
2495:    It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.

2497: .seealso: TSStep(), TSAdapt
2498: @*/
2499: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
2500: {

2507:   if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
2508:   (*ts->ops->evaluatestep)(ts,order,U,done);
2509:   return(0);
2510: }

2514: /*@
2515:    TSSolve - Steps the requested number of timesteps.

2517:    Collective on TS

2519:    Input Parameter:
2520: +  ts - the TS context obtained from TSCreate()
2521: -  u - the solution vector  (can be null if TSSetSolution() was used, otherwise must contain the initial conditions)

2523:    Level: beginner

2525:    Notes:
2526:    The final time returned by this function may be different from the time of the internally
2527:    held state accessible by TSGetSolution() and TSGetTime() because the method may have
2528:    stepped over the final time.

2530: .keywords: TS, timestep, solve

2532: .seealso: TSCreate(), TSSetSolution(), TSStep()
2533: @*/
2534: PetscErrorCode TSSolve(TS ts,Vec u)
2535: {
2536:   PetscBool         flg;
2537:   PetscViewer       viewer;
2538:   Vec               solution;
2539:   PetscErrorCode    ierr;
2540:   PetscViewerFormat format;

2545:   if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE) {   /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
2547:     if (!ts->vec_sol || u == ts->vec_sol) {
2548:       VecDuplicate(u,&solution);
2549:       TSSetSolution(ts,solution);
2550:       VecDestroy(&solution); /* grant ownership */
2551:     }
2552:     VecCopy(u,ts->vec_sol);
2553:   } else if (u) {
2554:     TSSetSolution(ts,u);
2555:   }
2556:   TSSetUp(ts);
2557:   /* reset time step and iteration counters */
2558:   ts->steps             = 0;
2559:   ts->ksp_its           = 0;
2560:   ts->snes_its          = 0;
2561:   ts->num_snes_failures = 0;
2562:   ts->reject            = 0;
2563:   ts->reason            = TS_CONVERGED_ITERATING;

2565:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,"-ts_view_pre",&viewer,&format,&flg);
2566:   if (flg && !PetscPreLoadingOn) {
2567:     PetscViewerPushFormat(viewer,format);
2568:     TSView(ts,viewer);
2569:     PetscViewerPopFormat(viewer);
2570:     PetscViewerDestroy(&viewer);
2571:   }

2573:   if (ts->ops->solve) {         /* This private interface is transitional and should be removed when all implementations are updated. */
2574:     (*ts->ops->solve)(ts);
2575:     VecCopy(ts->vec_sol,u);
2576:     ts->solvetime = ts->ptime;
2577:   } else {
2578:     /* steps the requested number of timesteps. */
2579:     if (ts->steps >= ts->max_steps)     ts->reason = TS_CONVERGED_ITS;
2580:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
2581:     while (!ts->reason) {
2582:       TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
2583:       TSStep(ts);
2584:       TSPostStep(ts);
2585:     }
2586:     if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
2587:       TSInterpolate(ts,ts->max_time,u);
2588:       ts->solvetime = ts->max_time;
2589:       solution = u;
2590:     } else {
2591:       if (u) {VecCopy(ts->vec_sol,u);}
2592:       ts->solvetime = ts->ptime;
2593:       solution = ts->vec_sol;
2594:     }
2595:     TSMonitor(ts,ts->steps,ts->solvetime,solution);
2596:   }
2597:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject)ts)->prefix,"-ts_view",&viewer,&format,&flg);
2598:   if (flg && !PetscPreLoadingOn) {
2599:     PetscViewerPushFormat(viewer,format);
2600:     TSView(ts,viewer);
2601:     PetscViewerPopFormat(viewer);
2602:     PetscViewerDestroy(&viewer);
2603:   }
2604:   return(0);
2605: }

2609: /*@
2610:    TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()

2612:    Collective on TS

2614:    Input Parameters:
2615: +  ts - time stepping context obtained from TSCreate()
2616: .  step - step number that has just completed
2617: .  ptime - model time of the state
2618: -  u - state at the current model time

2620:    Notes:
2621:    TSMonitor() is typically used within the time stepping implementations.
2622:    Users might call this function when using the TSStep() interface instead of TSSolve().

2624:    Level: advanced

2626: .keywords: TS, timestep
2627: @*/
2628: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
2629: {
2631:   PetscInt       i,n = ts->numbermonitors;

2636:   for (i=0; i<n; i++) {
2637:     (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
2638:   }
2639:   return(0);
2640: }

2642: /* ------------------------------------------------------------------------*/
2643: struct _n_TSMonitorLGCtx {
2644:   PetscDrawLG lg;
2645:   PetscInt    howoften;  /* when > 0 uses step % howoften, when negative only final solution plotted */
2646:   PetscInt    ksp_its,snes_its;
2647: };


2652: /*@C
2653:    TSMonitorLGCtxCreate - Creates a line graph context for use with
2654:    TS to monitor the solution process graphically in various ways

2656:    Collective on TS

2658:    Input Parameters:
2659: +  host - the X display to open, or null for the local machine
2660: .  label - the title to put in the title bar
2661: .  x, y - the screen coordinates of the upper left coordinate of the window
2662: .  m, n - the screen width and height in pixels
2663: -  howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

2665:    Output Parameter:
2666: .  ctx - the context

2668:    Options Database Key:
2669: +  -ts_monitor_lg_timestep - automatically sets line graph monitor
2670: .  -ts_monitor_lg_solution -
2671: .  -ts_monitor_lg_error -
2672: .  -ts_monitor_lg_ksp_iterations -
2673: .  -ts_monitor_lg_snes_iterations -
2674: -  -lg_indicate_data_points <true,false> - indicate the data points (at each time step) on the plot; default is true

2676:    Notes:
2677:    Use TSMonitorLGCtxDestroy() to destroy.

2679:    Level: intermediate

2681: .keywords: TS, monitor, line graph, residual, seealso

2683: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()

2685: @*/
2686: PetscErrorCode  TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
2687: {
2688:   PetscDraw      win;
2690:   PetscBool      flg = PETSC_TRUE;

2693:   PetscNew(struct _n_TSMonitorLGCtx,ctx);
2694:   PetscDrawCreate(comm,host,label,x,y,m,n,&win);
2695:   PetscDrawSetFromOptions(win);
2696:   PetscDrawLGCreate(win,1,&(*ctx)->lg);
2697:   PetscOptionsGetBool(NULL,"-lg_indicate_data_points",&flg,NULL);
2698:   if (flg) {
2699:     PetscDrawLGIndicateDataPoints((*ctx)->lg);
2700:   }
2701:   PetscLogObjectParent((*ctx)->lg,win);
2702:   (*ctx)->howoften = howoften;
2703:   return(0);
2704: }

2708: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
2709: {
2710:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
2711:   PetscReal      x   = ptime,y;

2715:   if (!step) {
2716:     PetscDrawAxis axis;
2717:     PetscDrawLGGetAxis(ctx->lg,&axis);
2718:     PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time","Time step");
2719:     PetscDrawLGReset(ctx->lg);
2720:   }
2721:   TSGetTimeStep(ts,&y);
2722:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
2723:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
2724:     PetscDrawLGDraw(ctx->lg);
2725:   }
2726:   return(0);
2727: }

2731: /*@C
2732:    TSMonitorLGCtxDestroy - Destroys a line graph context that was created
2733:    with TSMonitorLGCtxCreate().

2735:    Collective on TSMonitorLGCtx

2737:    Input Parameter:
2738: .  ctx - the monitor context

2740:    Level: intermediate

2742: .keywords: TS, monitor, line graph, destroy

2744: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep();
2745: @*/
2746: PetscErrorCode  TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
2747: {
2748:   PetscDraw      draw;

2752:   PetscDrawLGGetDraw((*ctx)->lg,&draw);
2753:   PetscDrawDestroy(&draw);
2754:   PetscDrawLGDestroy(&(*ctx)->lg);
2755:   PetscFree(*ctx);
2756:   return(0);
2757: }

2761: /*@
2762:    TSGetTime - Gets the time of the most recently completed step.

2764:    Not Collective

2766:    Input Parameter:
2767: .  ts - the TS context obtained from TSCreate()

2769:    Output Parameter:
2770: .  t  - the current time

2772:    Level: beginner

2774:    Note:
2775:    When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
2776:    TSSetPreStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.

2778: .seealso: TSSetInitialTimeStep(), TSGetTimeStep()

2780: .keywords: TS, get, time
2781: @*/
2782: PetscErrorCode  TSGetTime(TS ts,PetscReal *t)
2783: {
2787:   *t = ts->ptime;
2788:   return(0);
2789: }

2793: /*@
2794:    TSSetTime - Allows one to reset the time.

2796:    Logically Collective on TS

2798:    Input Parameters:
2799: +  ts - the TS context obtained from TSCreate()
2800: -  time - the time

2802:    Level: intermediate

2804: .seealso: TSGetTime(), TSSetDuration()

2806: .keywords: TS, set, time
2807: @*/
2808: PetscErrorCode  TSSetTime(TS ts, PetscReal t)
2809: {
2813:   ts->ptime = t;
2814:   return(0);
2815: }

2819: /*@C
2820:    TSSetOptionsPrefix - Sets the prefix used for searching for all
2821:    TS options in the database.

2823:    Logically Collective on TS

2825:    Input Parameter:
2826: +  ts     - The TS context
2827: -  prefix - The prefix to prepend to all option names

2829:    Notes:
2830:    A hyphen (-) must NOT be given at the beginning of the prefix name.
2831:    The first character of all runtime options is AUTOMATICALLY the
2832:    hyphen.

2834:    Level: advanced

2836: .keywords: TS, set, options, prefix, database

2838: .seealso: TSSetFromOptions()

2840: @*/
2841: PetscErrorCode  TSSetOptionsPrefix(TS ts,const char prefix[])
2842: {
2844:   SNES           snes;

2848:   PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
2849:   TSGetSNES(ts,&snes);
2850:   SNESSetOptionsPrefix(snes,prefix);
2851:   return(0);
2852: }


2857: /*@C
2858:    TSAppendOptionsPrefix - Appends to the prefix used for searching for all
2859:    TS options in the database.

2861:    Logically Collective on TS

2863:    Input Parameter:
2864: +  ts     - The TS context
2865: -  prefix - The prefix to prepend to all option names

2867:    Notes:
2868:    A hyphen (-) must NOT be given at the beginning of the prefix name.
2869:    The first character of all runtime options is AUTOMATICALLY the
2870:    hyphen.

2872:    Level: advanced

2874: .keywords: TS, append, options, prefix, database

2876: .seealso: TSGetOptionsPrefix()

2878: @*/
2879: PetscErrorCode  TSAppendOptionsPrefix(TS ts,const char prefix[])
2880: {
2882:   SNES           snes;

2886:   PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
2887:   TSGetSNES(ts,&snes);
2888:   SNESAppendOptionsPrefix(snes,prefix);
2889:   return(0);
2890: }

2894: /*@C
2895:    TSGetOptionsPrefix - Sets the prefix used for searching for all
2896:    TS options in the database.

2898:    Not Collective

2900:    Input Parameter:
2901: .  ts - The TS context

2903:    Output Parameter:
2904: .  prefix - A pointer to the prefix string used

2906:    Notes: On the fortran side, the user should pass in a string 'prifix' of
2907:    sufficient length to hold the prefix.

2909:    Level: intermediate

2911: .keywords: TS, get, options, prefix, database

2913: .seealso: TSAppendOptionsPrefix()
2914: @*/
2915: PetscErrorCode  TSGetOptionsPrefix(TS ts,const char *prefix[])
2916: {

2922:   PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
2923:   return(0);
2924: }

2928: /*@C
2929:    TSGetRHSJacobian - Returns the Jacobian J at the present timestep.

2931:    Not Collective, but parallel objects are returned if TS is parallel

2933:    Input Parameter:
2934: .  ts  - The TS context obtained from TSCreate()

2936:    Output Parameters:
2937: +  Amat - The (approximate) Jacobian J of G, where U_t = G(U,t)  (or NULL)
2938: .  Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat  (or NULL)
2939: .  func - Function to compute the Jacobian of the RHS  (or NULL)
2940: -  ctx - User-defined context for Jacobian evaluation routine  (or NULL)

2942:    Notes: You can pass in NULL for any return argument you do not need.

2944:    Level: intermediate

2946: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()

2948: .keywords: TS, timestep, get, matrix, Jacobian
2949: @*/
2950: PetscErrorCode  TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
2951: {
2953:   SNES           snes;
2954:   DM             dm;

2957:   TSGetSNES(ts,&snes);
2958:   SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
2959:   TSGetDM(ts,&dm);
2960:   DMTSGetRHSJacobian(dm,func,ctx);
2961:   return(0);
2962: }

2966: /*@C
2967:    TSGetIJacobian - Returns the implicit Jacobian at the present timestep.

2969:    Not Collective, but parallel objects are returned if TS is parallel

2971:    Input Parameter:
2972: .  ts  - The TS context obtained from TSCreate()

2974:    Output Parameters:
2975: +  Amat  - The (approximate) Jacobian of F(t,U,U_t)
2976: .  Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
2977: .  f   - The function to compute the matrices
2978: - ctx - User-defined context for Jacobian evaluation routine

2980:    Notes: You can pass in NULL for any return argument you do not need.

2982:    Level: advanced

2984: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetTimeStepNumber()

2986: .keywords: TS, timestep, get, matrix, Jacobian
2987: @*/
2988: PetscErrorCode  TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
2989: {
2991:   SNES           snes;
2992:   DM             dm;

2995:   TSGetSNES(ts,&snes);
2996:   SNESSetUpMatrices(snes);
2997:   SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
2998:   TSGetDM(ts,&dm);
2999:   DMTSGetIJacobian(dm,f,ctx);
3000:   return(0);
3001: }


3006: /*@C
3007:    TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
3008:    VecView() for the solution at each timestep

3010:    Collective on TS

3012:    Input Parameters:
3013: +  ts - the TS context
3014: .  step - current time-step
3015: .  ptime - current time
3016: -  dummy - either a viewer or NULL

3018:    Options Database:
3019: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

3021:    Notes: the initial solution and current solution are not displayed with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
3022:        will look bad

3024:    Level: intermediate

3026: .keywords: TS,  vector, monitor, view

3028: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3029: @*/
3030: PetscErrorCode  TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3031: {
3032:   PetscErrorCode   ierr;
3033:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
3034:   PetscDraw        draw;

3037:   if (!step && ictx->showinitial) {
3038:     if (!ictx->initialsolution) {
3039:       VecDuplicate(u,&ictx->initialsolution);
3040:     }
3041:     VecCopy(u,ictx->initialsolution);
3042:   }
3043:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);

3045:   if (ictx->showinitial) {
3046:     PetscReal pause;
3047:     PetscViewerDrawGetPause(ictx->viewer,&pause);
3048:     PetscViewerDrawSetPause(ictx->viewer,0.0);
3049:     VecView(ictx->initialsolution,ictx->viewer);
3050:     PetscViewerDrawSetPause(ictx->viewer,pause);
3051:     PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
3052:   }
3053:   VecView(u,ictx->viewer);
3054:   if (ictx->showtimestepandtime) {
3055:     PetscReal xl,yl,xr,yr,tw,w,h;
3056:     char      time[32];
3057:     size_t    len;

3059:     PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
3060:     PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3061:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3062:      PetscStrlen(time,&len);
3063:     PetscDrawStringGetSize(draw,&tw,NULL);
3064:     w    = xl + .5*(xr - xl) - .5*len*tw;
3065:     h    = yl + .95*(yr - yl);
3066:     PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3067:     PetscDrawFlush(draw);
3068:   }

3070:   if (ictx->showinitial) {
3071:     PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
3072:   }
3073:   return(0);
3074: }

3078: /*@C
3079:    TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram

3081:    Collective on TS

3083:    Input Parameters:
3084: +  ts - the TS context
3085: .  step - current time-step
3086: .  ptime - current time
3087: -  dummy - either a viewer or NULL

3089:    Level: intermediate

3091: .keywords: TS,  vector, monitor, view

3093: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3094: @*/
3095: PetscErrorCode  TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3096: {
3097:   PetscErrorCode    ierr;
3098:   TSMonitorDrawCtx  ictx = (TSMonitorDrawCtx)dummy;
3099:   PetscDraw         draw;
3100:   MPI_Comm          comm;
3101:   PetscInt          n;
3102:   PetscMPIInt       size;
3103:   PetscReal         xl,yl,xr,yr,tw,w,h;
3104:   char              time[32];
3105:   size_t            len;
3106:   const PetscScalar *U;

3109:   PetscObjectGetComm((PetscObject)ts,&comm);
3110:   MPI_Comm_size(comm,&size);
3111:   if (size != 1) SETERRQ(comm,PETSC_ERR_SUP,"Only allowed for sequential runs");
3112:   VecGetSize(u,&n);
3113:   if (n != 2) SETERRQ(comm,PETSC_ERR_SUP,"Only for ODEs with two unknowns");

3115:   PetscViewerDrawGetDraw(ictx->viewer,0,&draw);

3117:   VecGetArrayRead(u,&U);
3118:   PetscDrawAxisGetLimits(ictx->axis,&xl,&xr,&yl,&yr);
3119:   if ((PetscRealPart(U[0]) < xl) || (PetscRealPart(U[1]) < yl) || (PetscRealPart(U[0]) > xr) || (PetscRealPart(U[1]) > yr)) {
3120:       VecRestoreArrayRead(u,&U);
3121:       return(0);
3122:   }
3123:   if (!step) ictx->color++;
3124:   PetscDrawPoint(draw,PetscRealPart(U[0]),PetscRealPart(U[1]),ictx->color);
3125:   VecRestoreArrayRead(u,&U);

3127:   if (ictx->showtimestepandtime) {
3128:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
3129:     PetscSNPrintf(time,32,"Timestep %d Time %f",(int)step,(double)ptime);
3130:     PetscStrlen(time,&len);
3131:     PetscDrawStringGetSize(draw,&tw,NULL);
3132:     w    = xl + .5*(xr - xl) - .5*len*tw;
3133:     h    = yl + .95*(yr - yl);
3134:     PetscDrawString(draw,w,h,PETSC_DRAW_BLACK,time);
3135:   }
3136:   PetscDrawFlush(draw);
3137:   return(0);
3138: }


3143: /*@C
3144:    TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()

3146:    Collective on TS

3148:    Input Parameters:
3149: .    ctx - the monitor context

3151:    Level: intermediate

3153: .keywords: TS,  vector, monitor, view

3155: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
3156: @*/
3157: PetscErrorCode  TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
3158: {

3162:   PetscDrawAxisDestroy(&(*ictx)->axis);
3163:   PetscViewerDestroy(&(*ictx)->viewer);
3164:   VecDestroy(&(*ictx)->initialsolution);
3165:   PetscFree(*ictx);
3166:   return(0);
3167: }

3171: /*@C
3172:    TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx

3174:    Collective on TS

3176:    Input Parameter:
3177: .    ts - time-step context

3179:    Output Patameter:
3180: .    ctx - the monitor context

3182:    Options Database:
3183: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

3185:    Level: intermediate

3187: .keywords: TS,  vector, monitor, view

3189: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
3190: @*/
3191: PetscErrorCode  TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
3192: {
3193:   PetscErrorCode   ierr;

3196:   PetscNew(struct _n_TSMonitorDrawCtx,ctx);
3197:   PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
3198:   PetscViewerSetFromOptions((*ctx)->viewer);

3200:   (*ctx)->howoften    = howoften;
3201:   (*ctx)->showinitial = PETSC_FALSE;
3202:   PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);

3204:   (*ctx)->showtimestepandtime = PETSC_FALSE;
3205:   PetscOptionsGetBool(NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
3206:   (*ctx)->color = PETSC_DRAW_WHITE;
3207:   return(0);
3208: }

3212: /*@C
3213:    TSMonitorDrawError - Monitors progress of the TS solvers by calling
3214:    VecView() for the error at each timestep

3216:    Collective on TS

3218:    Input Parameters:
3219: +  ts - the TS context
3220: .  step - current time-step
3221: .  ptime - current time
3222: -  dummy - either a viewer or NULL

3224:    Level: intermediate

3226: .keywords: TS,  vector, monitor, view

3228: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3229: @*/
3230: PetscErrorCode  TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
3231: {
3232:   PetscErrorCode   ierr;
3233:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
3234:   PetscViewer      viewer = ctx->viewer;
3235:   Vec              work;

3238:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
3239:   VecDuplicate(u,&work);
3240:   TSComputeSolutionFunction(ts,ptime,work);
3241:   VecAXPY(work,-1.0,u);
3242:   VecView(work,viewer);
3243:   VecDestroy(&work);
3244:   return(0);
3245: }

3247: #include <petsc-private/dmimpl.h>
3250: /*@
3251:    TSSetDM - Sets the DM that may be used by some preconditioners

3253:    Logically Collective on TS and DM

3255:    Input Parameters:
3256: +  ts - the preconditioner context
3257: -  dm - the dm

3259:    Level: intermediate


3262: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
3263: @*/
3264: PetscErrorCode  TSSetDM(TS ts,DM dm)
3265: {
3267:   SNES           snes;
3268:   DMTS           tsdm;

3272:   PetscObjectReference((PetscObject)dm);
3273:   if (ts->dm) {               /* Move the DMTS context over to the new DM unless the new DM already has one */
3274:     if (ts->dm->dmts && !dm->dmts) {
3275:       DMCopyDMTS(ts->dm,dm);
3276:       DMGetDMTS(ts->dm,&tsdm);
3277:       if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
3278:         tsdm->originaldm = dm;
3279:       }
3280:     }
3281:     DMDestroy(&ts->dm);
3282:   }
3283:   ts->dm = dm;

3285:   TSGetSNES(ts,&snes);
3286:   SNESSetDM(snes,dm);
3287:   return(0);
3288: }

3292: /*@
3293:    TSGetDM - Gets the DM that may be used by some preconditioners

3295:    Not Collective

3297:    Input Parameter:
3298: . ts - the preconditioner context

3300:    Output Parameter:
3301: .  dm - the dm

3303:    Level: intermediate


3306: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
3307: @*/
3308: PetscErrorCode  TSGetDM(TS ts,DM *dm)
3309: {

3314:   if (!ts->dm) {
3315:     DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
3316:     if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
3317:   }
3318:   *dm = ts->dm;
3319:   return(0);
3320: }

3324: /*@
3325:    SNESTSFormFunction - Function to evaluate nonlinear residual

3327:    Logically Collective on SNES

3329:    Input Parameter:
3330: + snes - nonlinear solver
3331: . U - the current state at which to evaluate the residual
3332: - ctx - user context, must be a TS

3334:    Output Parameter:
3335: . F - the nonlinear residual

3337:    Notes:
3338:    This function is not normally called by users and is automatically registered with the SNES used by TS.
3339:    It is most frequently passed to MatFDColoringSetFunction().

3341:    Level: advanced

3343: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
3344: @*/
3345: PetscErrorCode  SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
3346: {
3347:   TS             ts = (TS)ctx;

3355:   (ts->ops->snesfunction)(snes,U,F,ts);
3356:   return(0);
3357: }

3361: /*@
3362:    SNESTSFormJacobian - Function to evaluate the Jacobian

3364:    Collective on SNES

3366:    Input Parameter:
3367: + snes - nonlinear solver
3368: . U - the current state at which to evaluate the residual
3369: - ctx - user context, must be a TS

3371:    Output Parameter:
3372: + A - the Jacobian
3373: . B - the preconditioning matrix (may be the same as A)
3374: - flag - indicates any structure change in the matrix

3376:    Notes:
3377:    This function is not normally called by users and is automatically registered with the SNES used by TS.

3379:    Level: developer

3381: .seealso: SNESSetJacobian()
3382: @*/
3383: PetscErrorCode  SNESTSFormJacobian(SNES snes,Vec U,Mat *A,Mat *B,MatStructure *flag,void *ctx)
3384: {
3385:   TS             ts = (TS)ctx;

3397:   (ts->ops->snesjacobian)(snes,U,A,B,flag,ts);
3398:   return(0);
3399: }

3403: /*@C
3404:    TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems only

3406:    Collective on TS

3408:    Input Arguments:
3409: +  ts - time stepping context
3410: .  t - time at which to evaluate
3411: .  U - state at which to evaluate
3412: -  ctx - context

3414:    Output Arguments:
3415: .  F - right hand side

3417:    Level: intermediate

3419:    Notes:
3420:    This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
3421:    The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().

3423: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
3424: @*/
3425: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
3426: {
3428:   Mat            Arhs,Brhs;
3429:   MatStructure   flg2;

3432:   TSGetRHSMats_Private(ts,&Arhs,&Brhs);
3433:   TSComputeRHSJacobian(ts,t,U,&Arhs,&Brhs,&flg2);
3434:   MatMult(Arhs,U,F);
3435:   return(0);
3436: }

3440: /*@C
3441:    TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.

3443:    Collective on TS

3445:    Input Arguments:
3446: +  ts - time stepping context
3447: .  t - time at which to evaluate
3448: .  U - state at which to evaluate
3449: -  ctx - context

3451:    Output Arguments:
3452: +  A - pointer to operator
3453: .  B - pointer to preconditioning matrix
3454: -  flg - matrix structure flag

3456:    Level: intermediate

3458:    Notes:
3459:    This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.

3461: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
3462: @*/
3463: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3464: {
3466:   *flg = SAME_PRECONDITIONER;
3467:   return(0);
3468: }

3472: /*@C
3473:    TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only

3475:    Collective on TS

3477:    Input Arguments:
3478: +  ts - time stepping context
3479: .  t - time at which to evaluate
3480: .  U - state at which to evaluate
3481: .  Udot - time derivative of state vector
3482: -  ctx - context

3484:    Output Arguments:
3485: .  F - left hand side

3487:    Level: intermediate

3489:    Notes:
3490:    The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
3491:    user is required to write their own TSComputeIFunction.
3492:    This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
3493:    The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().

3495: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant()
3496: @*/
3497: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
3498: {
3500:   Mat            A,B;
3501:   MatStructure   flg2;

3504:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
3505:   TSComputeIJacobian(ts,t,U,Udot,1.0,&A,&B,&flg2,PETSC_TRUE);
3506:   MatMult(A,Udot,F);
3507:   return(0);
3508: }

3512: /*@C
3513:    TSComputeIJacobianConstant - Reuses a Jacobian that is time-independent.

3515:    Collective on TS

3517:    Input Arguments:
3518: +  ts - time stepping context
3519: .  t - time at which to evaluate
3520: .  U - state at which to evaluate
3521: .  Udot - time derivative of state vector
3522: .  shift - shift to apply
3523: -  ctx - context

3525:    Output Arguments:
3526: +  A - pointer to operator
3527: .  B - pointer to preconditioning matrix
3528: -  flg - matrix structure flag

3530:    Level: intermediate

3532:    Notes:
3533:    This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.

3535: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
3536: @*/
3537: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flg,void *ctx)
3538: {
3540:   *flg = SAME_PRECONDITIONER;
3541:   return(0);
3542: }
3545: /*@
3546:    TSGetEquationType - Gets the type of the equation that TS is solving.

3548:    Not Collective

3550:    Input Parameter:
3551: .  ts - the TS context

3553:    Output Parameter:
3554: .  equation_type - see TSEquationType

3556:    Level: beginner

3558: .keywords: TS, equation type

3560: .seealso: TSSetEquationType(), TSEquationType
3561: @*/
3562: PetscErrorCode  TSGetEquationType(TS ts,TSEquationType *equation_type)
3563: {
3567:   *equation_type = ts->equation_type;
3568:   return(0);
3569: }

3573: /*@
3574:    TSSetEquationType - Sets the type of the equation that TS is solving.

3576:    Not Collective

3578:    Input Parameter:
3579: +  ts - the TS context
3580: .  equation_type - see TSEquationType

3582:    Level: advanced

3584: .keywords: TS, equation type

3586: .seealso: TSGetEquationType(), TSEquationType
3587: @*/
3588: PetscErrorCode  TSSetEquationType(TS ts,TSEquationType equation_type)
3589: {
3592:   ts->equation_type = equation_type;
3593:   return(0);
3594: }

3598: /*@
3599:    TSGetConvergedReason - Gets the reason the TS iteration was stopped.

3601:    Not Collective

3603:    Input Parameter:
3604: .  ts - the TS context

3606:    Output Parameter:
3607: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3608:             manual pages for the individual convergence tests for complete lists

3610:    Level: beginner

3612:    Notes:
3613:    Can only be called after the call to TSSolve() is complete.

3615: .keywords: TS, nonlinear, set, convergence, test

3617: .seealso: TSSetConvergenceTest(), TSConvergedReason
3618: @*/
3619: PetscErrorCode  TSGetConvergedReason(TS ts,TSConvergedReason *reason)
3620: {
3624:   *reason = ts->reason;
3625:   return(0);
3626: }

3630: /*@
3631:    TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.

3633:    Not Collective

3635:    Input Parameter:
3636: +  ts - the TS context
3637: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
3638:             manual pages for the individual convergence tests for complete lists

3640:    Level: advanced

3642:    Notes:
3643:    Can only be called during TSSolve() is active.

3645: .keywords: TS, nonlinear, set, convergence, test

3647: .seealso: TSConvergedReason
3648: @*/
3649: PetscErrorCode  TSSetConvergedReason(TS ts,TSConvergedReason reason)
3650: {
3653:   ts->reason = reason;
3654:   return(0);
3655: }

3659: /*@
3660:    TSGetSolveTime - Gets the time after a call to TSSolve()

3662:    Not Collective

3664:    Input Parameter:
3665: .  ts - the TS context

3667:    Output Parameter:
3668: .  ftime - the final time. This time should correspond to the final time set with TSSetDuration()

3670:    Level: beginner

3672:    Notes:
3673:    Can only be called after the call to TSSolve() is complete.

3675: .keywords: TS, nonlinear, set, convergence, test

3677: .seealso: TSSetConvergenceTest(), TSConvergedReason
3678: @*/
3679: PetscErrorCode  TSGetSolveTime(TS ts,PetscReal *ftime)
3680: {
3684:   *ftime = ts->solvetime;
3685:   return(0);
3686: }

3690: /*@
3691:    TSGetSNESIterations - Gets the total number of nonlinear iterations
3692:    used by the time integrator.

3694:    Not Collective

3696:    Input Parameter:
3697: .  ts - TS context

3699:    Output Parameter:
3700: .  nits - number of nonlinear iterations

3702:    Notes:
3703:    This counter is reset to zero for each successive call to TSSolve().

3705:    Level: intermediate

3707: .keywords: TS, get, number, nonlinear, iterations

3709: .seealso:  TSGetKSPIterations()
3710: @*/
3711: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
3712: {
3716:   *nits = ts->snes_its;
3717:   return(0);
3718: }

3722: /*@
3723:    TSGetKSPIterations - Gets the total number of linear iterations
3724:    used by the time integrator.

3726:    Not Collective

3728:    Input Parameter:
3729: .  ts - TS context

3731:    Output Parameter:
3732: .  lits - number of linear iterations

3734:    Notes:
3735:    This counter is reset to zero for each successive call to TSSolve().

3737:    Level: intermediate

3739: .keywords: TS, get, number, linear, iterations

3741: .seealso:  TSGetSNESIterations(), SNESGetKSPIterations()
3742: @*/
3743: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
3744: {
3748:   *lits = ts->ksp_its;
3749:   return(0);
3750: }

3754: /*@
3755:    TSGetStepRejections - Gets the total number of rejected steps.

3757:    Not Collective

3759:    Input Parameter:
3760: .  ts - TS context

3762:    Output Parameter:
3763: .  rejects - number of steps rejected

3765:    Notes:
3766:    This counter is reset to zero for each successive call to TSSolve().

3768:    Level: intermediate

3770: .keywords: TS, get, number

3772: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
3773: @*/
3774: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
3775: {
3779:   *rejects = ts->reject;
3780:   return(0);
3781: }

3785: /*@
3786:    TSGetSNESFailures - Gets the total number of failed SNES solves

3788:    Not Collective

3790:    Input Parameter:
3791: .  ts - TS context

3793:    Output Parameter:
3794: .  fails - number of failed nonlinear solves

3796:    Notes:
3797:    This counter is reset to zero for each successive call to TSSolve().

3799:    Level: intermediate

3801: .keywords: TS, get, number

3803: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
3804: @*/
3805: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
3806: {
3810:   *fails = ts->num_snes_failures;
3811:   return(0);
3812: }

3816: /*@
3817:    TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails

3819:    Not Collective

3821:    Input Parameter:
3822: +  ts - TS context
3823: -  rejects - maximum number of rejected steps, pass -1 for unlimited

3825:    Notes:
3826:    The counter is reset to zero for each step

3828:    Options Database Key:
3829:  .  -ts_max_reject - Maximum number of step rejections before a step fails

3831:    Level: intermediate

3833: .keywords: TS, set, maximum, number

3835: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
3836: @*/
3837: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
3838: {
3841:   ts->max_reject = rejects;
3842:   return(0);
3843: }

3847: /*@
3848:    TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves

3850:    Not Collective

3852:    Input Parameter:
3853: +  ts - TS context
3854: -  fails - maximum number of failed nonlinear solves, pass -1 for unlimited

3856:    Notes:
3857:    The counter is reset to zero for each successive call to TSSolve().

3859:    Options Database Key:
3860:  .  -ts_max_snes_failures - Maximum number of nonlinear solve failures

3862:    Level: intermediate

3864: .keywords: TS, set, maximum, number

3866: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
3867: @*/
3868: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
3869: {
3872:   ts->max_snes_failures = fails;
3873:   return(0);
3874: }

3878: /*@
3879:    TSSetErrorIfStepFails - Error if no step succeeds

3881:    Not Collective

3883:    Input Parameter:
3884: +  ts - TS context
3885: -  err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure

3887:    Options Database Key:
3888:  .  -ts_error_if_step_fails - Error if no step succeeds

3890:    Level: intermediate

3892: .keywords: TS, set, error

3894: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
3895: @*/
3896: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
3897: {
3900:   ts->errorifstepfailed = err;
3901:   return(0);
3902: }

3906: /*@C
3907:    TSMonitorSolutionBinary - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file

3909:    Collective on TS

3911:    Input Parameters:
3912: +  ts - the TS context
3913: .  step - current time-step
3914: .  ptime - current time
3915: .  u - current state
3916: -  viewer - binary viewer

3918:    Level: intermediate

3920: .keywords: TS,  vector, monitor, view

3922: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3923: @*/
3924: PetscErrorCode  TSMonitorSolutionBinary(TS ts,PetscInt step,PetscReal ptime,Vec u,void *viewer)
3925: {
3927:   PetscViewer    v = (PetscViewer)viewer;

3930:   VecView(u,v);
3931:   return(0);
3932: }

3936: /*@C
3937:    TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.

3939:    Collective on TS

3941:    Input Parameters:
3942: +  ts - the TS context
3943: .  step - current time-step
3944: .  ptime - current time
3945: .  u - current state
3946: -  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

3948:    Level: intermediate

3950:    Notes:
3951:    The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
3952:    These are named according to the file name template.

3954:    This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().

3956: .keywords: TS,  vector, monitor, view

3958: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
3959: @*/
3960: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
3961: {
3963:   char           filename[PETSC_MAX_PATH_LEN];
3964:   PetscViewer    viewer;

3967:   PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
3968:   PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
3969:   VecView(u,viewer);
3970:   PetscViewerDestroy(&viewer);
3971:   return(0);
3972: }

3976: /*@C
3977:    TSMonitorSolutionVTKDestroy - Destroy context for monitoring

3979:    Collective on TS

3981:    Input Parameters:
3982: .  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

3984:    Level: intermediate

3986:    Note:
3987:    This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().

3989: .keywords: TS,  vector, monitor, view

3991: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
3992: @*/
3993: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
3994: {

3998:   PetscFree(*(char**)filenametemplate);
3999:   return(0);
4000: }

4004: /*@
4005:    TSGetAdapt - Get the adaptive controller context for the current method

4007:    Collective on TS if controller has not been created yet

4009:    Input Arguments:
4010: .  ts - time stepping context

4012:    Output Arguments:
4013: .  adapt - adaptive controller

4015:    Level: intermediate

4017: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
4018: @*/
4019: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
4020: {

4026:   if (!ts->adapt) {
4027:     TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
4028:     PetscLogObjectParent(ts,ts->adapt);
4029:     PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
4030:   }
4031:   *adapt = ts->adapt;
4032:   return(0);
4033: }

4037: /*@
4038:    TSSetTolerances - Set tolerances for local truncation error when using adaptive controller

4040:    Logically Collective

4042:    Input Arguments:
4043: +  ts - time integration context
4044: .  atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
4045: .  vatol - vector of absolute tolerances or NULL, used in preference to atol if present
4046: .  rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
4047: -  vrtol - vector of relative tolerances or NULL, used in preference to atol if present

4049:    Level: beginner

4051: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSGetTolerances()
4052: @*/
4053: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
4054: {

4058:   if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
4059:   if (vatol) {
4060:     PetscObjectReference((PetscObject)vatol);
4061:     VecDestroy(&ts->vatol);

4063:     ts->vatol = vatol;
4064:   }
4065:   if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
4066:   if (vrtol) {
4067:     PetscObjectReference((PetscObject)vrtol);
4068:     VecDestroy(&ts->vrtol);

4070:     ts->vrtol = vrtol;
4071:   }
4072:   return(0);
4073: }

4077: /*@
4078:    TSGetTolerances - Get tolerances for local truncation error when using adaptive controller

4080:    Logically Collective

4082:    Input Arguments:
4083: .  ts - time integration context

4085:    Output Arguments:
4086: +  atol - scalar absolute tolerances, NULL to ignore
4087: .  vatol - vector of absolute tolerances, NULL to ignore
4088: .  rtol - scalar relative tolerances, NULL to ignore
4089: -  vrtol - vector of relative tolerances, NULL to ignore

4091:    Level: beginner

4093: .seealso: TS, TSAdapt, TSVecNormWRMS(), TSSetTolerances()
4094: @*/
4095: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
4096: {
4098:   if (atol)  *atol  = ts->atol;
4099:   if (vatol) *vatol = ts->vatol;
4100:   if (rtol)  *rtol  = ts->rtol;
4101:   if (vrtol) *vrtol = ts->vrtol;
4102:   return(0);
4103: }

4107: /*@
4108:    TSErrorNormWRMS - compute a weighted norm of the difference between a vector and the current state

4110:    Collective on TS

4112:    Input Arguments:
4113: +  ts - time stepping context
4114: -  Y - state vector to be compared to ts->vec_sol

4116:    Output Arguments:
4117: .  norm - weighted norm, a value of 1.0 is considered small

4119:    Level: developer

4121: .seealso: TSSetTolerances()
4122: @*/
4123: PetscErrorCode TSErrorNormWRMS(TS ts,Vec Y,PetscReal *norm)
4124: {
4125:   PetscErrorCode    ierr;
4126:   PetscInt          i,n,N;
4127:   const PetscScalar *u,*y;
4128:   Vec               U;
4129:   PetscReal         sum,gsum;

4135:   U = ts->vec_sol;
4137:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"Y cannot be the TS solution vector");

4139:   VecGetSize(U,&N);
4140:   VecGetLocalSize(U,&n);
4141:   VecGetArrayRead(U,&u);
4142:   VecGetArrayRead(Y,&y);
4143:   sum  = 0.;
4144:   if (ts->vatol && ts->vrtol) {
4145:     const PetscScalar *atol,*rtol;
4146:     VecGetArrayRead(ts->vatol,&atol);
4147:     VecGetArrayRead(ts->vrtol,&rtol);
4148:     for (i=0; i<n; i++) {
4149:       PetscReal tol = PetscRealPart(atol[i]) + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4150:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4151:     }
4152:     VecRestoreArrayRead(ts->vatol,&atol);
4153:     VecRestoreArrayRead(ts->vrtol,&rtol);
4154:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
4155:     const PetscScalar *atol;
4156:     VecGetArrayRead(ts->vatol,&atol);
4157:     for (i=0; i<n; i++) {
4158:       PetscReal tol = PetscRealPart(atol[i]) + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4159:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4160:     }
4161:     VecRestoreArrayRead(ts->vatol,&atol);
4162:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
4163:     const PetscScalar *rtol;
4164:     VecGetArrayRead(ts->vrtol,&rtol);
4165:     for (i=0; i<n; i++) {
4166:       PetscReal tol = ts->atol + PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4167:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4168:     }
4169:     VecRestoreArrayRead(ts->vrtol,&rtol);
4170:   } else {                      /* scalar atol, scalar rtol */
4171:     for (i=0; i<n; i++) {
4172:       PetscReal tol = ts->atol + ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
4173:       sum += PetscSqr(PetscAbsScalar(y[i] - u[i]) / tol);
4174:     }
4175:   }
4176:   VecRestoreArrayRead(U,&u);
4177:   VecRestoreArrayRead(Y,&y);

4179:   MPI_Allreduce(&sum,&gsum,1,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));
4180:   *norm = PetscSqrtReal(gsum / N);
4181:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
4182:   return(0);
4183: }

4187: /*@
4188:    TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler

4190:    Logically Collective on TS

4192:    Input Arguments:
4193: +  ts - time stepping context
4194: -  cfltime - maximum stable time step if using forward Euler (value can be different on each process)

4196:    Note:
4197:    After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()

4199:    Level: intermediate

4201: .seealso: TSGetCFLTime(), TSADAPTCFL
4202: @*/
4203: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
4204: {
4207:   ts->cfltime_local = cfltime;
4208:   ts->cfltime       = -1.;
4209:   return(0);
4210: }

4214: /*@
4215:    TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler

4217:    Collective on TS

4219:    Input Arguments:
4220: .  ts - time stepping context

4222:    Output Arguments:
4223: .  cfltime - maximum stable time step for forward Euler

4225:    Level: advanced

4227: .seealso: TSSetCFLTimeLocal()
4228: @*/
4229: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
4230: {

4234:   if (ts->cfltime < 0) {
4235:     MPI_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
4236:   }
4237:   *cfltime = ts->cfltime;
4238:   return(0);
4239: }

4243: /*@
4244:    TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu

4246:    Input Parameters:
4247: .  ts   - the TS context.
4248: .  xl   - lower bound.
4249: .  xu   - upper bound.

4251:    Notes:
4252:    If this routine is not called then the lower and upper bounds are set to
4253:    SNES_VI_NINF and SNES_VI_INF respectively during SNESSetUp().

4255:    Level: advanced

4257: @*/
4258: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
4259: {
4261:   SNES           snes;

4264:   TSGetSNES(ts,&snes);
4265:   SNESVISetVariableBounds(snes,xl,xu);
4266:   return(0);
4267: }

4269: #if defined(PETSC_HAVE_MATLAB_ENGINE)
4270: #include <mex.h>

4272: typedef struct {char *funcname; mxArray *ctx;} TSMatlabContext;

4276: /*
4277:    TSComputeFunction_Matlab - Calls the function that has been set with
4278:                          TSSetFunctionMatlab().

4280:    Collective on TS

4282:    Input Parameters:
4283: +  snes - the TS context
4284: -  u - input vector

4286:    Output Parameter:
4287: .  y - function vector, as set by TSSetFunction()

4289:    Notes:
4290:    TSComputeFunction() is typically used within nonlinear solvers
4291:    implementations, so most users would not generally call this routine
4292:    themselves.

4294:    Level: developer

4296: .keywords: TS, nonlinear, compute, function

4298: .seealso: TSSetFunction(), TSGetFunction()
4299: */
4300: PetscErrorCode  TSComputeFunction_Matlab(TS snes,PetscReal time,Vec u,Vec udot,Vec y, void *ctx)
4301: {
4302:   PetscErrorCode  ierr;
4303:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4304:   int             nlhs  = 1,nrhs = 7;
4305:   mxArray         *plhs[1],*prhs[7];
4306:   long long int   lx = 0,lxdot = 0,ly = 0,ls = 0;


4316:   PetscMemcpy(&ls,&snes,sizeof(snes));
4317:   PetscMemcpy(&lx,&u,sizeof(u));
4318:   PetscMemcpy(&lxdot,&udot,sizeof(udot));
4319:   PetscMemcpy(&ly,&y,sizeof(u));

4321:   prhs[0] =  mxCreateDoubleScalar((double)ls);
4322:   prhs[1] =  mxCreateDoubleScalar(time);
4323:   prhs[2] =  mxCreateDoubleScalar((double)lx);
4324:   prhs[3] =  mxCreateDoubleScalar((double)lxdot);
4325:   prhs[4] =  mxCreateDoubleScalar((double)ly);
4326:   prhs[5] =  mxCreateString(sctx->funcname);
4327:   prhs[6] =  sctx->ctx;
4328:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeFunctionInternal");
4329:    mxGetScalar(plhs[0]);
4330:   mxDestroyArray(prhs[0]);
4331:   mxDestroyArray(prhs[1]);
4332:   mxDestroyArray(prhs[2]);
4333:   mxDestroyArray(prhs[3]);
4334:   mxDestroyArray(prhs[4]);
4335:   mxDestroyArray(prhs[5]);
4336:   mxDestroyArray(plhs[0]);
4337:   return(0);
4338: }


4343: /*
4344:    TSSetFunctionMatlab - Sets the function evaluation routine and function
4345:    vector for use by the TS routines in solving ODEs
4346:    equations from MATLAB. Here the function is a string containing the name of a MATLAB function

4348:    Logically Collective on TS

4350:    Input Parameters:
4351: +  ts - the TS context
4352: -  func - function evaluation routine

4354:    Calling sequence of func:
4355: $    func (TS ts,PetscReal time,Vec u,Vec udot,Vec f,void *ctx);

4357:    Level: beginner

4359: .keywords: TS, nonlinear, set, function

4361: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4362: */
4363: PetscErrorCode  TSSetFunctionMatlab(TS ts,const char *func,mxArray *ctx)
4364: {
4365:   PetscErrorCode  ierr;
4366:   TSMatlabContext *sctx;

4369:   /* currently sctx is memory bleed */
4370:   PetscMalloc(sizeof(TSMatlabContext),&sctx);
4371:   PetscStrallocpy(func,&sctx->funcname);
4372:   /*
4373:      This should work, but it doesn't
4374:   sctx->ctx = ctx;
4375:   mexMakeArrayPersistent(sctx->ctx);
4376:   */
4377:   sctx->ctx = mxDuplicateArray(ctx);

4379:   TSSetIFunction(ts,NULL,TSComputeFunction_Matlab,sctx);
4380:   return(0);
4381: }

4385: /*
4386:    TSComputeJacobian_Matlab - Calls the function that has been set with
4387:                          TSSetJacobianMatlab().

4389:    Collective on TS

4391:    Input Parameters:
4392: +  ts - the TS context
4393: .  u - input vector
4394: .  A, B - the matrices
4395: -  ctx - user context

4397:    Output Parameter:
4398: .  flag - structure of the matrix

4400:    Level: developer

4402: .keywords: TS, nonlinear, compute, function

4404: .seealso: TSSetFunction(), TSGetFunction()
4405: @*/
4406: PetscErrorCode  TSComputeJacobian_Matlab(TS ts,PetscReal time,Vec u,Vec udot,PetscReal shift,Mat *A,Mat *B,MatStructure *flag, void *ctx)
4407: {
4408:   PetscErrorCode  ierr;
4409:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4410:   int             nlhs  = 2,nrhs = 9;
4411:   mxArray         *plhs[2],*prhs[9];
4412:   long long int   lx = 0,lxdot = 0,lA = 0,ls = 0, lB = 0;


4418:   /* call Matlab function in ctx with arguments u and y */

4420:   PetscMemcpy(&ls,&ts,sizeof(ts));
4421:   PetscMemcpy(&lx,&u,sizeof(u));
4422:   PetscMemcpy(&lxdot,&udot,sizeof(u));
4423:   PetscMemcpy(&lA,A,sizeof(u));
4424:   PetscMemcpy(&lB,B,sizeof(u));

4426:   prhs[0] =  mxCreateDoubleScalar((double)ls);
4427:   prhs[1] =  mxCreateDoubleScalar((double)time);
4428:   prhs[2] =  mxCreateDoubleScalar((double)lx);
4429:   prhs[3] =  mxCreateDoubleScalar((double)lxdot);
4430:   prhs[4] =  mxCreateDoubleScalar((double)shift);
4431:   prhs[5] =  mxCreateDoubleScalar((double)lA);
4432:   prhs[6] =  mxCreateDoubleScalar((double)lB);
4433:   prhs[7] =  mxCreateString(sctx->funcname);
4434:   prhs[8] =  sctx->ctx;
4435:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSComputeJacobianInternal");
4436:    mxGetScalar(plhs[0]);
4437:   *flag   =  (MatStructure) mxGetScalar(plhs[1]);
4438:   mxDestroyArray(prhs[0]);
4439:   mxDestroyArray(prhs[1]);
4440:   mxDestroyArray(prhs[2]);
4441:   mxDestroyArray(prhs[3]);
4442:   mxDestroyArray(prhs[4]);
4443:   mxDestroyArray(prhs[5]);
4444:   mxDestroyArray(prhs[6]);
4445:   mxDestroyArray(prhs[7]);
4446:   mxDestroyArray(plhs[0]);
4447:   mxDestroyArray(plhs[1]);
4448:   return(0);
4449: }


4454: /*
4455:    TSSetJacobianMatlab - Sets the Jacobian function evaluation routine and two empty Jacobian matrices
4456:    vector for use by the TS routines in solving ODEs from MATLAB. Here the function is a string containing the name of a MATLAB function

4458:    Logically Collective on TS

4460:    Input Parameters:
4461: +  ts - the TS context
4462: .  A,B - Jacobian matrices
4463: .  func - function evaluation routine
4464: -  ctx - user context

4466:    Calling sequence of func:
4467: $    flag = func (TS ts,PetscReal time,Vec u,Vec udot,Mat A,Mat B,void *ctx);


4470:    Level: developer

4472: .keywords: TS, nonlinear, set, function

4474: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4475: */
4476: PetscErrorCode  TSSetJacobianMatlab(TS ts,Mat A,Mat B,const char *func,mxArray *ctx)
4477: {
4478:   PetscErrorCode  ierr;
4479:   TSMatlabContext *sctx;

4482:   /* currently sctx is memory bleed */
4483:   PetscMalloc(sizeof(TSMatlabContext),&sctx);
4484:   PetscStrallocpy(func,&sctx->funcname);
4485:   /*
4486:      This should work, but it doesn't
4487:   sctx->ctx = ctx;
4488:   mexMakeArrayPersistent(sctx->ctx);
4489:   */
4490:   sctx->ctx = mxDuplicateArray(ctx);

4492:   TSSetIJacobian(ts,A,B,TSComputeJacobian_Matlab,sctx);
4493:   return(0);
4494: }

4498: /*
4499:    TSMonitor_Matlab - Calls the function that has been set with TSMonitorSetMatlab().

4501:    Collective on TS

4503: .seealso: TSSetFunction(), TSGetFunction()
4504: @*/
4505: PetscErrorCode  TSMonitor_Matlab(TS ts,PetscInt it, PetscReal time,Vec u, void *ctx)
4506: {
4507:   PetscErrorCode  ierr;
4508:   TSMatlabContext *sctx = (TSMatlabContext*)ctx;
4509:   int             nlhs  = 1,nrhs = 6;
4510:   mxArray         *plhs[1],*prhs[6];
4511:   long long int   lx = 0,ls = 0;


4517:   PetscMemcpy(&ls,&ts,sizeof(ts));
4518:   PetscMemcpy(&lx,&u,sizeof(u));

4520:   prhs[0] =  mxCreateDoubleScalar((double)ls);
4521:   prhs[1] =  mxCreateDoubleScalar((double)it);
4522:   prhs[2] =  mxCreateDoubleScalar((double)time);
4523:   prhs[3] =  mxCreateDoubleScalar((double)lx);
4524:   prhs[4] =  mxCreateString(sctx->funcname);
4525:   prhs[5] =  sctx->ctx;
4526:    mexCallMATLAB(nlhs,plhs,nrhs,prhs,"PetscTSMonitorInternal");
4527:    mxGetScalar(plhs[0]);
4528:   mxDestroyArray(prhs[0]);
4529:   mxDestroyArray(prhs[1]);
4530:   mxDestroyArray(prhs[2]);
4531:   mxDestroyArray(prhs[3]);
4532:   mxDestroyArray(prhs[4]);
4533:   mxDestroyArray(plhs[0]);
4534:   return(0);
4535: }


4540: /*
4541:    TSMonitorSetMatlab - Sets the monitor function from Matlab

4543:    Level: developer

4545: .keywords: TS, nonlinear, set, function

4547: .seealso: TSGetFunction(), TSComputeFunction(), TSSetJacobian(), TSSetFunction()
4548: */
4549: PetscErrorCode  TSMonitorSetMatlab(TS ts,const char *func,mxArray *ctx)
4550: {
4551:   PetscErrorCode  ierr;
4552:   TSMatlabContext *sctx;

4555:   /* currently sctx is memory bleed */
4556:   PetscMalloc(sizeof(TSMatlabContext),&sctx);
4557:   PetscStrallocpy(func,&sctx->funcname);
4558:   /*
4559:      This should work, but it doesn't
4560:   sctx->ctx = ctx;
4561:   mexMakeArrayPersistent(sctx->ctx);
4562:   */
4563:   sctx->ctx = mxDuplicateArray(ctx);

4565:   TSMonitorSet(ts,TSMonitor_Matlab,sctx,NULL);
4566:   return(0);
4567: }
4568: #endif



4574: /*@C
4575:    TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
4576:        in a time based line graph

4578:    Collective on TS

4580:    Input Parameters:
4581: +  ts - the TS context
4582: .  step - current time-step
4583: .  ptime - current time
4584: -  lg - a line graph object

4586:    Level: intermediate

4588:     Notes: each process in a parallel run displays its component solutions in a separate window

4590: .keywords: TS,  vector, monitor, view

4592: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4593: @*/
4594: PetscErrorCode  TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4595: {
4596:   PetscErrorCode    ierr;
4597:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
4598:   const PetscScalar *yy;
4599:   PetscInt          dim;

4602:   if (!step) {
4603:     PetscDrawAxis axis;
4604:     PetscDrawLGGetAxis(ctx->lg,&axis);
4605:     PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
4606:     VecGetLocalSize(u,&dim);
4607:     PetscDrawLGSetDimension(ctx->lg,dim);
4608:     PetscDrawLGReset(ctx->lg);
4609:   }
4610:   VecGetArrayRead(u,&yy);
4611: #if defined(PETSC_USE_COMPLEX)
4612:   {
4613:     PetscReal *yreal;
4614:     PetscInt  i,n;
4615:     VecGetLocalSize(u,&n);
4616:     PetscMalloc(n*sizeof(PetscReal),&yreal);
4617:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4618:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4619:     PetscFree(yreal);
4620:   }
4621: #else
4622:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4623: #endif
4624:   VecRestoreArrayRead(u,&yy);
4625:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4626:     PetscDrawLGDraw(ctx->lg);
4627:   }
4628:   return(0);
4629: }

4633: /*@C
4634:    TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the solution vector
4635:        in a time based line graph

4637:    Collective on TS

4639:    Input Parameters:
4640: +  ts - the TS context
4641: .  step - current time-step
4642: .  ptime - current time
4643: -  lg - a line graph object

4645:    Level: intermediate

4647:    Notes:
4648:    Only for sequential solves.

4650:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

4652:    Options Database Keys:
4653: .  -ts_monitor_lg_error - create a graphical monitor of error history

4655: .keywords: TS,  vector, monitor, view

4657: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4658: @*/
4659: PetscErrorCode  TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4660: {
4661:   PetscErrorCode    ierr;
4662:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
4663:   const PetscScalar *yy;
4664:   Vec               y;
4665:   PetscInt          dim;

4668:   if (!step) {
4669:     PetscDrawAxis axis;
4670:     PetscDrawLGGetAxis(ctx->lg,&axis);
4671:     PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Solution");
4672:     VecGetLocalSize(u,&dim);
4673:     PetscDrawLGSetDimension(ctx->lg,dim);
4674:     PetscDrawLGReset(ctx->lg);
4675:   }
4676:   VecDuplicate(u,&y);
4677:   TSComputeSolutionFunction(ts,ptime,y);
4678:   VecAXPY(y,-1.0,u);
4679:   VecGetArrayRead(y,&yy);
4680: #if defined(PETSC_USE_COMPLEX)
4681:   {
4682:     PetscReal *yreal;
4683:     PetscInt  i,n;
4684:     VecGetLocalSize(y,&n);
4685:     PetscMalloc(n*sizeof(PetscReal),&yreal);
4686:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
4687:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
4688:     PetscFree(yreal);
4689:   }
4690: #else
4691:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
4692: #endif
4693:   VecRestoreArrayRead(y,&yy);
4694:   VecDestroy(&y);
4695:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4696:     PetscDrawLGDraw(ctx->lg);
4697:   }
4698:   return(0);
4699: }

4703: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4704: {
4705:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4706:   PetscReal      x   = ptime,y;
4708:   PetscInt       its;

4711:   if (!n) {
4712:     PetscDrawAxis axis;

4714:     PetscDrawLGGetAxis(ctx->lg,&axis);
4715:     PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
4716:     PetscDrawLGReset(ctx->lg);

4718:     ctx->snes_its = 0;
4719:   }
4720:   TSGetSNESIterations(ts,&its);
4721:   y    = its - ctx->snes_its;
4722:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4723:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4724:     PetscDrawLGDraw(ctx->lg);
4725:   }
4726:   ctx->snes_its = its;
4727:   return(0);
4728: }

4732: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
4733: {
4734:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4735:   PetscReal      x   = ptime,y;
4737:   PetscInt       its;

4740:   if (!n) {
4741:     PetscDrawAxis axis;

4743:     PetscDrawLGGetAxis(ctx->lg,&axis);
4744:     PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
4745:     PetscDrawLGReset(ctx->lg);

4747:     ctx->ksp_its = 0;
4748:   }
4749:   TSGetKSPIterations(ts,&its);
4750:   y    = its - ctx->ksp_its;
4751:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4752:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
4753:     PetscDrawLGDraw(ctx->lg);
4754:   }
4755:   ctx->ksp_its = its;
4756:   return(0);
4757: }

4761: /*@
4762:    TSComputeLinearStability - computes the linear stability function at a point

4764:    Collective on TS and Vec

4766:    Input Parameters:
4767: +  ts - the TS context
4768: -  xr,xi - real and imaginary part of input arguments

4770:    Output Parameters:
4771: .  yr,yi - real and imaginary part of function value

4773:    Level: developer

4775: .keywords: TS, compute

4777: .seealso: TSSetRHSFunction(), TSComputeIFunction()
4778: @*/
4779: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
4780: {

4785:   if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
4786:   (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
4787:   return(0);
4788: }