#!/usr/bin/env python

'''
You should install psyco and gmpy if you want maximal speed.

Filename: pyecm
Authors: Eric Larson <elarson3@uoregon.edu>, Martin Kelly <aomighty@gmail.com>, 
License: GNU GPL (see <http://www.gnu.org/licenses/gpl.html> for more information.
Description: Factors a number using the Elliptic Curve Method, a fast algorithm for numbers < 50 digits.

We are using curves in Suyama's parametrization, but points are in affine coordinates, and the curve is in Wierstrass form.
The idea is to do many curves in parallel to take advantage of batch inversion algorithms. This gives asymptotically 7 modular multiplications per bit.

WARNING: pyecm is NOT a general-purpose number theory or elliptic curve library. Many of the functions have confusing calling syntax, and some will rather unforgivingly crash or return bad output if the input is not formatted exactly correctly. That said, there are a couple of functions that you CAN safely import into another program. These are: factors, isprime. However, be sure to read the documentation for each function that you use.
'''

import math
import sys
import random

try:
	import psyco
	psyco.full()
	PSYCO_EXISTS = True
except ImportError:
	PSYCO_EXISTS = False

try:	# Try to use gmpy
	from gmpy import gcd, invert, mpz, next_prime, sqrt, root
	GMPY_EXISTS = True

except ImportError:
	PRIMES = (5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 167)
	GMPY_EXISTS = False

	def gcd(a, b):
		'''Computes the Greatest Common Divisor of a and b using the standard quadratic time improvement to the Euclidean Algorithm.

	Returns the GCD of a and b.'''
		if b == 0:
			return a
		elif a == 0:
			return b

		count = 0

		if a < 0:
			a = -a
		if b < 0:
			b = -b

		while not ((a & 1) | (b & 1)):
			count += 1
			a >>= 1
			b >>= 1

		while not a & 1:
			a >>= 1

		while not b & 1:
			b >>= 1

		if b > a:
			b,a = a,b

		while b != 0 and a != b:
			a -= b
			while not (a & 1):
				a >>= 1

			if b > a:
				b, a = a, b

		return a << count

	def invert(a, b):
		'''Computes the inverse of a modulo b. b must be odd.

Returns the inverse of a (mod b).'''
		if a == 0 or b == 0:
			return 0

		truth = False
		if a < 0:
			truth = True
			a = -a

		b_orig = b
		alpha = 1
		beta = 0

		while not a & 1:
			if alpha & 1:
				alpha += b_orig
			alpha >>= 1
			a >>= 1

		if b > a:
			a, b = b, a
			alpha, beta = beta, alpha

		while b != 0 and a != b:
			a -= b
			alpha -= beta

			while not a & 1:
				if alpha & 1:
					alpha += b_orig
				alpha >>= 1
				a >>= 1
			
			if b > a:
				a,b = b,a
				alpha, beta = beta, alpha

		if a == b:
			a -= b
			alpha -= beta
			a, b = b, a
			alpha, beta = beta, alpha

		if a != 1:
			return 0

		if truth:
			alpha = b_orig - alpha
		
		return alpha

	def next_prime(n):
		'''Finds the next prime after n.

Returns the next prime after n.'''
		n += 1
		if n <= 167:
			if n <= 23:
				if n <= 3:
					return 3 - (n <= 2)
				n += (n & 1) ^ 1
				return n + (((4 - (n % 3)) >> 1) & 2)

			n += (n & 1) ^ 1
			inc = n % 3
			n += ((4 - inc) >> 1) & 2
			inc = 6 - ((inc + ((2 - inc) & 2)) << 1)

			while 0 in (n % 5, n % 7, n % 11):
				n += inc
				inc = 6 - inc
			return n

		n += (n & 1) ^ 1
		inc = n % 3
		n += ((4 - inc) >> 1) & 2
		inc = 6 - ((inc + ((2 - inc) & 2)) << 1)
		should_break = False

		while 1:
			for prime in PRIMES:
				if not n % prime:
					should_break = True
					break

			if should_break:
				should_break = False
				n += inc
				inc = 6 - inc
				continue

			p = 1
			for i in xrange(int(math.log(n) / LOG_2), 0, -1):
				p <<= (n >> i) & 1
				p = (p * p) % n

			if p == 1:
				return n
		
			n += inc
			inc = 6 - inc

	def mpz(n):
		'''A dummy function to ensure compatibility with those that do not have gmpy.

Returns n.'''
		return n

	def root(n, k):
		'''Finds the floor of the kth root of n. This is a duplicate of gmpy's root function.

Returns a tuple. The first item is the floor of the kth root of n. The second is 1 if the root is exact (as in, sqrt(16)) and 0 if it is not.'''
		low = 0
		high = n + 1
		while high > low + 1:
			mid = (low + high) >> 1
			mr = mid**k
			if mr == n:
				return (mid, 1)
			if mr < n:
				low = mid
			if mr > n:
				high = mid
		return (low, 0)

	def sqrt(n):
		return root(n, 2)[0]

# We're done importing. Now for some constants.
if GMPY_EXISTS:
	INV_C = 1.4
else:
	if PSYCO_EXISTS:
		INV_C = 7.3
	else:
		INV_C = 13.0
LOG_2 = math.log(2)
LOG_4 = math.log(4)
LOG_3_MINUS_LOG_LOG_2 = math.log(3) - math.log(LOG_2)
LOG_4_OVER_9 = LOG_4 / 9
_3_OVER_LOG_2 = 3 / LOG_2
_5_LOG_10 = 5 * math.log(10)
_7_OVER_LOG_2 = 7 / LOG_2
BIG = 2.0**512
BILLION = 10**9 # Something big that fits into an int.
MULT = math.log(3) / LOG_2
ONE = mpz(1)
SMALL = 2.0**(-30)
SMALLEST_COUNTEREXAMPLE_FASTPRIME = 2047
T = (type(mpz(1)), type(1), type(1L))
DUMMY = 'dummy' # Dummy value throughout the program
VERSION = '2.0'
_12_LOG_2_OVER_49 = 12 * math.log(2) / 49
RECORD = 1162795072109807846655696105569042240239

class ts:
	'''Does basic manipulations with Taylor Series (centered at 0). An example call to ts:
a = ts(7, 23, [1<<23, 2<<23, 3<<23]) -- now, a represents 1 + 2x + 3x^2. Here, computations will be done to degree 7, with accuracy 2^(-23). Input coefficients must be integers.'''

	def __init__(self, degree, acc, p):
		self.acc = acc
		self.coefficients = p[:degree + 1]
		while len(self.coefficients) <= degree:
			self.coefficients.append(0)

	def add(self, a, b):
		'''Adds a and b'''
		b_ = b.coefficients[:]
		a_ = a.coefficients[:]
		self.coefficients = []

		while len(b_) > len(a_):
			a_.append(0)
		while len(b_) < len(a_):
			b_.append(0)

		for i in xrange(len(a_)):
			self.coefficients.append(a_[i] + b_[i])

		self.acc = a.acc

	def ev(self, x):
		'''Returns a(x)'''
		answer = 0
		for i in xrange(len(self.coefficients) - 1, -1, -1):
			answer *= x
			answer += self.coefficients[i]
		return answer

	def evh(self):
		'''Returns a(1/2)'''
		answer = 0
		for i in xrange(len(self.coefficients) - 1, -1, -1):
			answer >>= 1
			answer += self.coefficients[i]
		return answer

	def evmh(self):
		'''Returns a(-1/2)'''
		answer = 0
		for i in xrange(len(self.coefficients) - 1, -1, -1):
			answer = - answer >> 1
			answer += self.coefficients[i]
		return answer

	def int(self):
		'''Replaces a by an integral of a'''
		self.coefficients = [0] + self.coefficients
		for i in xrange(1, len(self.coefficients)):
			self.coefficients[i] /= i

	def lindiv(self, a):
		'''a.lindiv(k) -- sets a/(x-k/2) for integer k'''
		for i in xrange(len(self.coefficients) - 1):
			self.coefficients[i] <<= 1
			self.coefficients[i] /= a
			self.coefficients[i + 1] -= self.coefficients[i]
		self.coefficients[-1] <<= 1
		self.coefficients[-1] /= a

	def neg(self):
		'''Sets a to -a'''
		for i in xrange(len(self.coefficients)):
			self.coefficients[i] = - self.coefficients[i]

	def set(self, a):
		'''a.set(b) sets a to b'''
		self.coefficients = a.coefficients[:]
		self.acc = a.acc

	def simp(self):
		'''Turns a into a type of Taylor series that can be fed into ev, but cannot be computed with further.'''
		for i in xrange(len(self.coefficients)):
			shift = max(0, int(math.log(abs(self.coefficients[i]) + 1) / LOG_2) - 1000)
			self.coefficients[i] = float(self.coefficients[i] >> shift)
			shift = self.acc - shift
			for _ in xrange(shift >> 9):
				self.coefficients[i] /= BIG
			self.coefficients[i] /= 2.0**(shift & 511)
	       		if abs(self.coefficients[i] / self.coefficients[0]) <= SMALL:
				self.coefficients = self.coefficients[:i]
				break

# Functions are declared in alphabetical order except when dependencies force them to be at the end.

def add(p1, p2,  n):
	'''Adds first argument to second (second argument is not preserved). The arguments are points on an elliptic curve. The first argument may be a tuple instead of a list. The addition is thus done pointwise. This function has bizzare input/output because there are fast algorithms for inverting a bunch of numbers at once.

Returns a list of the addition results.'''
	inv = range(len(p1))

	for i in xrange(len(p1)):
		inv[i] = p1[i][0] - p2[i][0]

	inv = parallel_invert(inv, n)

	if not isinstance(inv, list):
		return inv
	
	for i in xrange(len(p1)):
		m = ((p1[i][1] - p2[i][1]) * inv[i]) % n
		p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n
		p2[i][1] = (m * (p1[i][0] - p2[i][0]) - p1[i][1]) % n

	return p2

def add_sub_x_only(p1, p2,  n):
	'''Given a pair of lists of points p1 and p2, computes the x-coordinates of
p1[i] + p2[i] and p1[i] - p2[i] for each i.

Returns two lists, the first being the sums and the second the differences.'''
	sums = range(len(p1))
	difs = range(len(p1))
	
	for i in xrange(len(p1)):
		sums[i] = p2[i][0] - p1[i][0]

	sums = parallel_invert(sums, n)

	if not isinstance(sums, list):
		return (sums, None)
	
	for i in xrange(len(p1)):
		ms = ((p2[i][1] - p1[i][1]) * sums[i]) % n
		md = ((p2[i][1] + p1[i][1]) * sums[i]) % n
		sums[i] = (ms * ms - p1[i][0] - p2[i][0]) % n
		difs[i] = (md * md - p1[i][0] - p2[i][0]) % n

	sums = tuple(sums)
	difs = tuple(difs)

	return (sums, difs)

def atdn(a, d, n):
	'''Calculates a to the dth power modulo n.

Returns the calculation's result.'''
	x = 1
	pos = int(math.log(d) / LOG_2)

	while pos >= 0:
		x = (x * x) % n
		if (d >> pos) & 1:
			x *= a
		pos -= 1

	return x % n

def copy(p):
	'''Copies a list using only deep copies.

Returns a copy of p.'''
	answer = []
	for i in p:
		answer.append(i[:])

	return answer

def could_be_prime(n):
	'''Performs some trials to compute whether n could be prime. Run time is O(N^3 / (log N)^2) for N bits.

Returns whether it is possible for n to be prime (True or False).
'''
	if n < 2:
		return False
	if n == 2:
		return True
	if not n & 1:
		return False

	product = ONE
	log_n = int(math.log(n)) + 1
	bound = int(math.log(n) / (LOG_2 * math.log(math.log(n))**2)) + 1
	if bound * log_n >= n:
		bound = 1
		log_n = int(sqrt(n))
	prime_bound = 0
	prime = 3

	for _ in xrange(bound):
		p = []
		prime_bound += log_n
		while prime <= prime_bound:
			p.append(prime)
			prime = next_prime(prime)
		if p != []:
			p = prod(p)
			product = (product * p) % n

	return gcd(n, product) == 1

def double(p, n):
	'''Doubles each point in the input list. Much like the add function, we take advantage of fast inversion.

Returns the doubled list.'''
	inv = range(len(p))

	for i in xrange(len(p)):
		inv[i] = p[i][1] << 1

	inv = parallel_invert(inv, n)

	if not isinstance(inv, list):
		return inv

	for i in xrange(len(p)):
		x = p[i][0]
		m = (x * x) % n
		m = ((m + m + m + p[i][2]) * inv[i]) % n
		p[i][0] = (m * m - x - x) % n
		p[i][1] = (m * (x - p[i][0]) - p[i][1]) % n

	return p

def fastprime(n): 
	'''Tests for primality of n using an algorithm that is very fast, O(N**3 / log(N)) (assuming quadratic multiplication) where n has N digits, but ocasionally inaccurate for n >= 2047.

Returns the primality of n (True or False).'''
	if not could_be_prime(n):
		return False
	if n == 2:
		return True

	j = 1 
	d = n >> 1 

	while not d & 1: 
		d >>= 1 
		j += 1 

	p = 1
	pos = int(math.log(d) / LOG_2)

	while pos >= 0:
		p = (p * p) % n
		p <<= (d >> pos) & 1
		pos -= 1

	if p in (n - 1, n + 1): 
		return True 

	for _ in xrange(j): 
		p = (p * p) % n  

		if p == 1: 
			return False 
		elif p == n - 1: 
			return True 

	return False

def greatest_n(phi_max):
	'''Finds the greatest n such that phi(n) < phi_max.

Returns the greatest n such that phi(n) < phi_max.'''
	phi_product = 1
	product = 1
	prime = 1
	while phi_product <= phi_max:
		prime = next_prime(prime)
		phi_product *= prime - 1
		product *= prime

	n_max = (phi_max * product) / phi_product

	phi_values = range(n_max)

	prime = 2
	while prime <= n_max:
		for i in xrange(0, n_max, prime):
			phi_values[i] -= phi_values[i] / prime

		prime = next_prime(prime)

	for i in xrange(n_max - 1, 0, -1):
		if phi_values[i] <= phi_max:
			return i

def inv_const(n):
	'''Finds a constant relating the complexity of multiplication to that of modular inversion.

Returns the constant for a given n.'''
	return int(INV_C * math.log(n)**0.42)

def naf(d):
	'''Finds a number's non-adjacent form, reverses the bits, replaces the
-1's with 3's, and interprets the result base 4.

Returns the result interpreted as if in base 4.'''
	g = 0L
	while d:
		g <<= 2
		g ^= ((d & 2) & (d << 1)) ^ (d & 1)
		d += (d & 2) >> 1
		d >>= 1
	return g

def parallel_invert(l, n):
	'''Inverts all elements of a list modulo some number, using 3(n-1) modular multiplications and one inversion.

Returns the list with all elements inverted modulo 3(n-1).'''
	l_ = l[:]
	for i in xrange(len(l)-1):
		l[i+1] = (l[i] * l[i+1]) % n
	
	inv = invert(l[-1], n)
	if inv == 0:
		return gcd(l[-1], n)

	for i in xrange(len(l)-1, 0, -1):
		l[i] = (inv * l[i-1]) % n
		inv = (inv * l_[i]) % n
	l[0] = inv

	return l

def prod(p):
	'''Multiplies all elements of a list together. The order in which the
elements are multiplied is chosen to take advantage of Python's Karatsuba
Multiplication

Returns the product of everything in p.'''
	jump = 1

	while jump < len(p):
		for i in xrange(0, len(p) - jump, jump << 1):
			p[i] *= p[i + jump]
			p[i + jump] = None

		jump <<= 1

	return p[0]

def rho_ev(x, ts):
	'''Evaluates Dickman's rho function, which calculates the asymptotic
probability as N approaches infinity (for a given x) that all of N's factors
are bounded by N^(1/x).'''
	return ts[int(x)].ev(x - int(x) - 0.5)

def rho_ts(n):
	'''Makes a list of Taylor series for the rho function centered at 0.5, 1.5, 2.5 ... n + 0.5. The reason this is necessary is that the radius of convergence of rho is small, so we need lots of Taylor series centered at different places to correctly evaluate it.

Returns a list of Taylor series.'''
	f = ts(10, 10, [])
	answer = [ts(10, 10, [1])]
	for _ in xrange(n):
		answer.append(ts(10, 10, [1]))
	deg = 5
	acc = 50 + n * int(1 + math.log(1 + n) + math.log(math.log(3 + n)))
	r = 1
	rho_series = ts(1, 10, [0])
	while r != rho_series.coefficients[0]:
		deg = (deg + (deg << 2)) / 3
		r = rho_series.coefficients[0]
		rho_series = ts(deg, acc, [(1L) << acc])
		center = 0.5
		for i in xrange(1, n+1):
			f.set(rho_series)
			center += 1
			f.lindiv(int(2*center))
			f.int()
			f.neg()
			d = ts(deg, acc, [rho_series.evh() - f.evmh()])
			f.add(f, d)
			rho_series.set(f)
			f.simp()
			answer[i].set(f)
		rho_series.simp()

	return answer

def sub_sub_sure_factors(f, u, curve_parameter):
	'''Finds all factors that can be found using ECM with a smoothness bound of u and sigma and give curve parameters. If that fails, checks for being a prime power and does Fermat factoring as well.
	
Yields factors.'''
	while not (f & 1):
		yield 2
		f >>= 1
	
	while not (f % 3):
		yield 3
		f /= 3

	if isprime(f):
		yield f
		return

	log_u = math.log(u)
	u2 = int(_7_OVER_LOG_2 * u * log_u / math.log(log_u))
	primes = []
	still_a_chance = True
	log_mo = math.log(f + 1 + sqrt(f << 2))

	g = gcd(curve_parameter, f)
	if g not in (1, f):
		for factor in sub_sub_sure_factors(g, u, curve_parameter):
			yield factor
		for factor in sub_sub_sure_factors(f/g, u, curve_parameter):
			yield factor
		return

	g2 = gcd(curve_parameter**2 - 5, f)
	if g2 not in (1, f):
		for factor in sub_sub_sure_factors(g2, u, curve_parameter):
			yield factor
		for factor in sub_sub_sure_factors(f / g2, u, curve_parameter):
			yield factor
		return

	if f in (g, g2):
		yield f

	while still_a_chance:
		p1 = get_points([curve_parameter], f)
		for prime in primes:
			p1 = multiply(p1, prime, f)
			if not isinstance(p1, list):
				if p1 != f:
					for factor in sub_sub_sure_factors(p1, u, curve_parameter):
						yield factor
					for factor in sub_sub_sure_factors(f/p1, u, curve_parameter):
						yield factor
					return
				else:
					still_a_chance = False
					break

		if not still_a_chance:
			break

		prime = 1
		still_a_chance = False
		while prime < u2:
			prime = next_prime(prime)
			should_break = False
			for _ in xrange(int(log_mo / math.log(prime))):
				p1 = multiply(p1, prime, f)
				if not isinstance(p1, list):
					if p1 != f:
						for factor in sub_sub_sure_factors(p1, u, curve_parameter):
							yield factor
						for factor in sub_sub_sure_factors(f/p1, u, curve_parameter):
							yield factor
						return

					else:
						still_a_chance = True
						primes.append(prime)
						should_break = True
						break
			if should_break:
				break

	for i in xrange(2, int(math.log(f) / LOG_2) + 2):
		r = root(f, i)
		if r[1]:
			for factor in sub_sub_sure_factors(r[0], u, curve_parameter):
				for _ in xrange(i):
					yield factor
			return
	
	a = 1 + sqrt(f)
	bsq = a * a - f
	iter = 0

	while bsq != sqrt(bsq)**2 and iter < 3:
		a += 1
		iter += 1
		bsq += a + a - 1

	if bsq == sqrt(bsq)**2:
		b = sqrt(bsq)
		for factor in sub_sub_sure_factors(a - b, u, curve_parameter):
			yield factor
		for factor in sub_sub_sure_factors(a + b, u, curve_parameter):
			yield factor
		return

	yield f
	return

def sub_sure_factors(f, u, curve_params):
	'''Factors n as far as possible using the fact that f came from a mainloop call.
	
Yields factors of n.'''
	if len(curve_params) == 1:
		for factor in sub_sub_sure_factors(f, u, curve_params[0]):
			yield factor
		return

	c1 = curve_params[:len(curve_params) >> 1]
	c2 = curve_params[len(curve_params) >> 1:]

	if mainloop(f, u, c1) == 1:
		for factor in sub_sure_factors(f, u, c2):
			yield factor
		return

	if mainloop(f, u, c2) == 1:
		for factor in sub_sure_factors(f, u, c1):
			yield factor
		return

	for factor in sub_sure_factors(f, u, c1):
		if isprime(factor):
			yield factor
		else:
			for factor_of_factor in sub_sure_factors(factor, u, c2):
				yield factor_of_factor

	return

def subtract(p1, p2,  n):
	'''Given two points on an elliptic curve, subtract them pointwise.
	
Returns the resulting point.'''
	inv = range(len(p1))

	for i in xrange(len(p1)):
		inv[i] = p2[i][0] - p1[i][0]

	inv = parallel_invert(inv, n)

	if not isinstance(inv, list):
		return inv
	
	for i in xrange(len(p1)):
		m = ((p1[i][1] + p2[i][1]) * inv[i]) % n
		p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n
		p2[i][1] = (m * (p1[i][0] - p2[i][0]) + p1[i][1]) % n

	return p2

def congrats(f, veb):
	'''Prints a congratulations message when a record factor is found. This only happens if the second parameter (verbosity) is set to True.

Returns nothing.'''

	if veb and f > RECORD:
		print 'Congratulations! You may have found a record factor via pyecm!'
		print 'Please email the Mainloop call to Eric Larson <elarson3@uoregon.edu>'

	return

def sure_factors(n, u, curve_params, veb, ra, ov, tdb, pr):
	'''Factor n as far as possible with given smoothness bound and curve parameters, including possibly (but very rarely) calling ecm again.

Yields factors of n.'''
	f = mainloop(n, u, curve_params)

	if f == 1:
		return 

	if veb:
		print 'Found factor:', f
		print 'Mainloop call was:', n, u, curve_params

	if isprime(f):
		congrats(f, veb)
		yield f
		n /= f
		if isprime(n):
			yield n
		if veb:
			print '(factor processed)'
		return

	for factor in sub_sure_factors(f, u, curve_params):
		if isprime(factor):
			congrats(f, veb)
			yield factor
		else:
			if veb:
				print 'entering new ecm loop to deal with stubborn factor:', factor
			for factor_of_factor in ecm(factor, True, ov, veb, tdb, pr):
				yield factor_of_factor
		n /= factor
	
	if isprime(n):
		yield n

	if veb:
		print '(factor processed)'
	return

def to_tuple(p):
	'''Converts a list of two-element lists into a list of two-element tuples.

Returns a list.'''
	answer = []
	for i in p:
		answer.append((i[0], i[1]))

	return tuple(answer)

def mainloop(n, u, p1):
	''' Input:	n  -- an integer to (try) to factor.
			u  -- the phase 1 smoothness bound
			p1 -- a list of sigma parameters to try

	Output:	A factor of n. (1 is returned on faliure).

	Notes: 
		1. Other parameters, such as the phase 2 smoothness bound are selected by the mainloop function.
		2. This function uses batch algorithms, so if p1 is not long enough, there will be a loss in efficiency.
		3. Of course, if p1 is too long, then the mainloop will have to use more memory.
		      [The memory is polynomial in the length of p1, log u, and log n].'''
	k = inv_const(n)
	log_u = math.log(u)
	log_log_u = math.log(log_u)
	log_n = math.log(n)
	u2 = int(_7_OVER_LOG_2 * u * log_u / log_log_u)
	ncurves = len(p1)
	w = int(math.sqrt(_3_OVER_LOG_2 * ncurves / k) - 0.5)
	number_of_primes = int((ncurves << w) * math.sqrt(LOG_4_OVER_9 * log_n / k) / log_u) # Lagrange multipliers!
	number_of_primes = min(number_of_primes, int((log_n / math.log(log_n))**2 * ncurves / log_u), int(u / log_u))
	number_of_primes = max(number_of_primes, 1)
	m = math.log(number_of_primes) + log_log_u
	w = min(w, int((m - 2 * math.log(m) + LOG_3_MINUS_LOG_LOG_2) / LOG_2))
	w = max(w, 1)
	max_order = n + sqrt(n << 2) + 1 # By Hasse's theorem.
	det_bound = ((1 << w) - 1 + ((w & 1) << 1)) / 3
	log_mo = math.log(max_order)
	p = range(number_of_primes)
	prime = mpz(2)

	p1 = get_points(p1, n)
	if not isinstance(p1, list):
		return p1

	for _ in xrange(int(log_mo / LOG_2)):
		p1 = double(p1, n)
		if not isinstance(p1, list):
			return p1
	
	for i in xrange(1, det_bound):
		prime  = (i << 1) + 1
		if isprime(prime):
			for _ in xrange(int(log_mo / math.log(prime))):
				p1 = multiply(p1, prime, n)
				if not isinstance(p1, list):
					return p1

	while prime < sqrt(u) and isinstance(p1, list):
		for i in xrange(number_of_primes):
			prime = next_prime(prime)
			p[i] = prime ** max(1, int(log_u / math.log(prime)))
		p1 = fast_multiply(p1, prod(p),  n, w)

	if not isinstance(p1, list):
		return p1

	while prime < u and isinstance(p1, list):
		for i in xrange(number_of_primes):
			prime = next_prime(prime)
			p[i] = prime
		p1 = fast_multiply(p1, prod(p),  n, w)

	if not isinstance(p1, list):
		return p1

	del p

	small_jump = int(greatest_n((1 << (w + 2)) / 3))
	small_jump = max(120, small_jump)
	big_jump = 1 + (int(sqrt((5 << w) / 21)) << 1)
	total_jump = small_jump * big_jump
	big_multiple = max(total_jump << 1, ((int(next_prime(prime)) - (total_jump >> 1)) / total_jump) * total_jump)
	big_jump_2 = big_jump >> 1
	small_jump_2 = small_jump >> 1
	product = ONE

	psmall_jump = multiply(p1, small_jump, n)
	if not isinstance(psmall_jump, list):
		return psmall_jump

	ptotal_jump = multiply(psmall_jump, big_jump, n)
	if not isinstance(ptotal_jump, list):
		return ptotal_jump

	pgiant_step = multiply(p1, big_multiple, n)
	if not isinstance(pgiant_step, list):
		return pgiant_step

	small_multiples = [None]
	for i in xrange(1, small_jump >> 1):
		if gcd(i, small_jump) == 1:
			tmp = multiply(p1, i, n)
			if not isinstance(tmp, list):
				return tmp
			for i in xrange(len(tmp)):
				tmp[i] = tmp[i][0]
			small_multiples.append(tuple(tmp))
		else:
			small_multiples.append(None)
	small_multiples = tuple(small_multiples)

	big_multiples = [None]
	for i in xrange(1, (big_jump + 1) >> 1):
		tmp = multiply(psmall_jump, i, n)
		if not isinstance(tmp, list):
			return tmp
		big_multiples.append(to_tuple(tmp))
	big_multiples = tuple(big_multiples)

	psmall_jump = to_tuple(psmall_jump)
	ptotal_jump = to_tuple(ptotal_jump)
	
	while big_multiple < u2:
		big_multiple += total_jump
		center_up = big_multiple
		center_down = big_multiple
		pgiant_step = add(ptotal_jump, pgiant_step, n)
		if not isinstance(pgiant_step, list):
			return pgiant_step

		prime_up = next_prime(big_multiple - small_jump_2)
		while prime_up < big_multiple + small_jump_2:
			s = small_multiples[abs(int(prime_up) - big_multiple)]
			for j in xrange(ncurves):
				product *= pgiant_step[j][0] - s[j]
				product %= n
			prime_up = next_prime(prime_up)
		
		for i in xrange(1, big_jump_2 + 1):
			center_up += small_jump
			center_down -= small_jump
			
			pmed_step_up, pmed_step_down = add_sub_x_only(big_multiples[i], pgiant_step, n)
			if pmed_step_down == None:
				return pmed_step_up

			while prime_up < center_up + small_jump_2:
				s = small_multiples[abs(int(prime_up) - center_up)]
				for j in xrange(ncurves):
					product *= pmed_step_up[j] - s[j]
					product %= n
				prime_up = next_prime(prime_up)

			prime_down = next_prime(center_down - small_jump_2)
			while prime_down < center_down + small_jump_2:
				s = small_multiples[abs(int(prime_down) - center_down)]
				for j in xrange(ncurves):
					product *= pmed_step_down[j] - s[j]
					product %= n
				prime_down = next_prime(prime_down)

	if gcd(product, n) != 1:
		return gcd(product, n)

	return 1

def fast_multiply(p, d, n, w):
	'''Multiplies each element of p by d. Multiplication is on
an elliptic curve. Both d and <p> must be odd. Also, <p> may not be divisible by anything less than or equal to 2 * (2**w + (-1)**w) / 3 + 1.

Returns the list p multiplied by d.'''

	mask = (1 << (w << 1)) - 1
	flop = mask / 3
	g = naf(d) >> 4
	precomp = {}
	m = copy(p)
	p = double(p, n)

	for i in xrange((flop >> w) + (w & 1)):
		key = naf((i << 1) + 1)
		precomp[key] = to_tuple(m)
		precomp[((key & flop) << 1) ^ key] = precomp[key]
		m = add(p, m, n)
	
	while g > 0:
		if g & 1:
			t = g & mask
			sh = 1 + int(math.log(t) / LOG_4)
			for _ in xrange(sh):
				p = double(p, n)

			if g & 2:
				p = subtract(precomp[t], p, n)
			else:
				p = add(precomp[t], p,  n)

			g >>= (sh << 1)
			if not isinstance(p, list):
				return p
		else:
			p = double(p, n)
			g >>= 2

	return p 

def get_points(p1, n):
	'''Outputs points in Weierstrass form, given input in Suyama
parametrization.

Returns the points.'''
	p1 = list(p1)
	invs = p1[:]
	ncurves = len(p1)

	for j in xrange(ncurves):
		sigma = mpz(p1[j])
		u = (sigma**2 - 5) % n
		v = sigma << 2
		i = (((u * u) % n) * ((v * u << 2) % n)) % n
		p1[j] = [u, v, i]
		invs[j] = (i * v) % n

	invs = parallel_invert(invs, n)
	if not isinstance(invs, list):
		return invs

	for j in xrange(ncurves):
		u, v, i = p1[j]
		inv = invs[j]

		a = (((((((v - u)**3 % n) * v) % n) * (u + u + u + v)) % n) * inv - 2) % n # <-- This line is a thing of beauty
		x_0 = (((((u * i) % n) * inv) % n) ** 3) % n # And this one gets second place
		b = ((((x_0 + a) * x_0 + 1) % n) * x_0) % n
		x_0 = (b * x_0) % n
		y_0 = (b**2) % n

		while a % 3:
			a += n

		x_0 = (x_0 + a * b / 3) % n
		c = (y_0 * ((1 - a**2 / 3) % n)) % n

		p1[j] = [x_0, y_0, c]

	return p1

def isprime(n): 
	''' Tests for primality of n trying first fastprime and then a slower but accurate algorithm. Time complexity is O(N**3) (assuming quadratic multiplication), where n has N digits.

Returns the primality of n (True or False).'''
	if not fastprime(n):
		return False
	elif n < SMALLEST_COUNTEREXAMPLE_FASTPRIME:
		return True

	do_loop = False
	j = 1
	d = n >> 1
	a = 2
	bound = int(0.75 * math.log(math.log(n)) * math.log(n)) + 1

	while not d & 1:
		d >>= 1
		j += 1

	while a < bound:
		a = next_prime(a)
		p = atdn(a, d, n) 

		if p == 1 or p == n - 1: 
			continue 

		for _ in xrange(j): 
			p = (p * p) % n 

			if p == 1: 
				return False 
			elif p == n - 1: 
				do_loop = True
				break

		if do_loop:
			do_loop = False
			continue

		return False

	return True

def multiply(p1, d, n):
	'''Multiplies each element of a list by a number, without using too much overhead.

Returns a list p multiplied through by d.'''
	pos = int(math.log(d) / LOG_2) - 1
	p = copy(p1)

	while pos >= 0:
		p = double(p, n)
		if not isinstance(p, list):
			return p
		if (d >> pos) & 1:
			p = add(p1, p,  n)
			if not isinstance(p, list):
				return p
		pos -= 1

	return p

def ecm(n, ra, ov, veb, tdb, pr): # DOCUMENTATION
	'''Input:
	n   -- An integer to factor
	veb -- If True, be verbose
	ra  -- If True, select sigma values randomly
	ov  -- How asymptotically fast the calculation is
	pr  -- What portion of the total processing power this run gets

Output: Factors of n, via a generator.

Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''

	if veb:
		looking_for = 0
	k = inv_const(n)

	if ra:
		sigma = 6 + random.randrange(BILLION)
	else:
		sigma = 6

	for factor in sure_factors(n, k, range(sigma, sigma + k), veb, ra, ov, tdb, pr):
		yield factor
		n /= factor

	if n == 1:
		return

	if ra:
		sigma += k + random.randrange(BILLION)
	else:
		sigma += k

	x_max = 0.5 * math.log(n) / math.log(k)
	t = rho_ts(int(x_max))
	prime_probs = []
	nc = 1 + int(_12_LOG_2_OVER_49 * ov * ov * k)
	eff_nc = nc / pr

	for i in xrange(1 + (int(math.log(n)) >> 1)):
		if i < math.log(tdb):
			prime_probs.append(0)
		else:
			prime_probs.append(1.0/i)

	for i in xrange(len(prime_probs)):
		p_success = rho_ev((i - 2.65) / math.log(k), t)
		p_fail = max(0, (1 - p_success * math.log(math.log(k)))) ** (k / pr)
		prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i])

	while n != 1:
		low = int(k)
		high = n
		while high > low + 1:
			u = (high + low) >> 1
			sum = 0
			log_u = math.log(u)
			for i in xrange(len(prime_probs)):
				log_p = i - 2.65
				log_u = math.log(u)
				quot = log_p / log_u
				sum += prime_probs[i] * (rho_ev(quot - 1, t) - rho_ev(quot, t) * log_u)
			if sum < 0:
				high = u
			else:
				low = u

		if ra:
			sigma += nc + random.randrange(BILLION)
		else:
			sigma += nc

		for factor in sure_factors(n, u, range(sigma, sigma + nc), veb, ra, ov, tdb, pr):
			yield factor
			n /= factor

		for i in xrange(len(prime_probs)):
			p_success = rho_ev((i - 2.65) / math.log(u), t)
			p_fail = max(0, (1 - p_success * math.log(math.log(u)))) ** eff_nc
			prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i])
		prime_probs = prime_probs[:1 + (int(math.log(n)) >> 1)]

		if veb and n != 1:
			m = max(prime_probs)
			for i in xrange(len(prime_probs)):
				if prime_probs[i] == m:
					break

			new_looking_for = (int(i / _5_LOG_10) + 1)
			new_looking_for += new_looking_for << 2
			if new_looking_for != looking_for:
				looking_for = new_looking_for
				print 'Searching for primes around', looking_for, 'digits'

	return

def factors(n, veb, ra, ov, pr):
	'''Generates factors of n.
Strips small primes, then feeds to ecm function.

Input:
	n   -- An integer to factor
	veb -- If True, be verbose
	ra  -- If True, select sigma values randomly
	ov  -- How asymptotically fast the calculation is
	pr  -- What portion of the total processing power this run gets

Output: Factors of n, via a generator.

Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''


	if type(n) not in T:
		raise ValueError, 'Number given must be integer or long.'

	if not 0 < pr <= 1:
		yield 'Error: pr must be between 0 and 1'
		return

	while not n & 1:
		n >>= 1
		yield 2

	n = mpz(n)
	k = inv_const(n)
	prime = 2
	trial_division_bound = max(10 * k**2, 100)

	while prime < trial_division_bound:
		prime = next_prime(prime)
		while not n % prime:
			n /= prime
			yield prime

	if isprime(n):
		yield n
		return

	if n == 1:
		return

	for factor in ecm(n, ra, ov, veb, trial_division_bound, pr):
		yield factor

### End of algorithm code; beginning of interface code ##

def is_switch(s):
	'''Tests whether the input string is a switch (e.g. "-v" or "--help").

Returns True or False.'''

	for i in xrange(len(s)):
		if s[i] != '-':
			break

	if i == 0: # s not begin with "-"
		return False
	for char in s[i:]:
		if not char.isalpha():
			if char == '=': # Switches like "--portion=" are acceptable
				return True
			else:
				return False
	return True

def parse_switch(s, switch):
	'''Parses a switch in the form '--string=num' and returns num or calls help() if the string is invalid.

Returns the num in '--string=num'.'''

	try:
		return float(s[len(switch) + 3:])
	except ValueError:
		help()

def valid_input(s):
	'''Tests the input string for validity as a mathematical expressions.

Returns True or False.'''
	valid = ('(', ')', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '/', '^', ' ', '\t')

	for char in s:
		if char not in valid:
			return False

	return True

def help():
	print	'''\
Usage: pyecm [OPTION] [expression to factor]
Factor numbers using the Elliptic Curve Method.

   --portion=num     Does only part of the work for factoring, corresponding to
what fraction of the total work the machine is doing. Useful for working in
parallel. For example, if there are three machines: 1GHz, 1GHz, and 2GHz, print
should be set to 0.25 for the 1GHz machines and 0.5 for the 2GHz machine.
Implies -r and -v. -r is needed to avoid duplicating work and -v is needed to
report results.
   --ov=num          Sets the value of the internal parameter ov, which
determines the trade-off between memory and time usage. Do not touch if you do
not know what you are doing. Please read all the documentation and understand
the full implications of the parameter before using this switch.
   -n, --noverbose   Terse. On by default. Needed to cancel the -v from the
--portion or --random switches. If both -n and -v are specified, the one
specified last takes precedence.
   -r, --random      Chooses random values for sigma, an internal parameter in
the calculation. Implies -v; if you're doing something random, you want to know
what's happening.
   -v, --verbose     Explains what is being done with intermediate calculations
and results.

With no integers to factor given via command-line, read standard input.

Please report bugs to Eric Larson <elarson3@uoregon.edu>.'''
	sys.exit()

def command_line(veb, ra, ov, pr):
	l = len(sys.argv)
	for i in xrange(1, l):
		if not is_switch(sys.argv[i]):
			break

	for j in xrange(i, l): # Start with the first non-switch
		if j != i: # Pretty printing
			print
		response = sys.argv[j]
		if valid_input(response):
			response = response.replace('^', '**')
			try:
				n = eval(response)
				int(n)
			except (SyntaxError, TypeError, ValueError):
				help()
		else:
			help()

		print	'Factoring %d:' % n
		if n < 0:
			print	-1
			n = -n
			continue
		if n == 0:
			print	'0 does not have a well-defined factorization.'
			continue
		elif n == 1:
			print	1
			continue

		if ov == DUMMY:
			ov = 2*math.log(math.log(n))
		for factor in factors(n, veb, ra, ov, pr):
			print factor

def interactive(veb, ra, ov, pr):
	print	'pyecm v. %s (interactive mode):' % VERSION
	print	'Type "exit" at any time to quit.'
	print

	try:
		response = raw_input()
		while response != 'exit' and response != 'quit':
			if valid_input(response):
				response = response.replace('^', '**')
				try:
					n = eval(response)
					int(n)
				except (SyntaxError, TypeError, ValueError):
					help()
			else:
				help()

			print	'Factoring number %d:' % n
			if n < 0:
				print	-1
				n = -n
			if n == 0:
				print	'0 does not have a well-defined factorization.'
				print
				response = raw_input()
				continue
			elif n == 1:
				print	1
				print
				response = raw_input()
				continue

			if ov == DUMMY:
				ov = 2*math.log(math.log(n))
			for factor in factors(n, veb, ra, ov, pr):
				print	factor
			print
			response = raw_input()
	except (EOFError, KeyboardInterrupt):
		sys.exit()

def main():
	ra = veb = False
	pr = 1.0
	ov = DUMMY
	for item in sys.argv[1:]:
		if item == '--help':
			help()
		elif item == '--noverbose':
			veb = False
		elif item == '--random':
			ra = veb = True
		elif item == '--verbose':
			veb = True
		elif item[:10] == '--portion=':
			pr = parse_switch(item, 'portion')
			ra = veb = True
		elif item[:5] == '--ov=':
			ov = parse_switch(item, 'ov')
		elif len(item) >= 2 and item[0] == '-' and item[1] != '-': # Short switch
			for char in item:
				if char == 'h':
					help()
				elif char == 'n':
					veb = False
				elif char == 'r':
					ra = veb = True
				elif char == 'v':
					veb = True
		else:
			if not valid_input(item):
				print	'I am confused about the following: "%s". Here\'s the help page:' % item
				print
				help()

	if len(sys.argv) > 1 and not is_switch(sys.argv[-1]):
		command_line(veb, ra, ov, pr)
	else:
		interactive(veb, ra, ov, pr)

if __name__ == '__main__':
	main()
