# coding: utf-8
# /*##########################################################################
#
# Copyright (C) 2016-2018 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/

__authors__ = ["V. Valls"]
__license__ = "MIT"
__date__ = "16/10/2020"

from silx.gui import qt
from .AbstractModel import AbstractModel


class PeakSelectionModel(AbstractModel):

    structureChanged = qt.Signal()
    """Emitted when there is different elements in the list."""

    contentChanged = qt.Signal()
    """Emitted when the content of the elements changed."""

    def __init__(self, parent=None):
        super(PeakSelectionModel, self).__init__(parent)
        self.__peaks = []
        self.__cacheStructureWasChanged = False
        self.__cacheContentWasChanged = False

    def isValid(self):
        for p in self.__peaks:
            if not p.isValid():
                return
        return True

    def __len__(self):
        return len(self.__peaks)

    def peakCount(self):
        """Returns the amout of peak selected throug all the groups

        :rtype: int
        """
        count = 0
        for peaks in self:
            count += len(peaks)
        return count

    def __iter__(self):
        for p in self.__peaks:
            yield p

    def __getitem__(self, index):
        return self.__peaks[index]

    def peakFromRingNumber(self, ringNumber):
        """
        Returns a peak model from it's ring number.

        If no peaks where found, returns `None`.

        :rtype: Union[PeakModel,None]
        """
        for p in self.__peaks:
            if p.ringNumber() == ringNumber:
                return p
        return None

    def append(self, peak):
        self.__peaks.append(peak)
        peak.changed.connect(self.__contentWasChanged)
        self.__structureWasChanged()

    def remove(self, peak):
        self.__peaks.remove(peak)
        peak.changed.disconnect(self.__contentWasChanged)
        self.__structureWasChanged()

    def __structureWasChanged(self):
        emitted = self.wasChanged()
        if emitted:
            self.structureChanged.emit()
        else:
            self.__cacheStructureWasChanged = True

    def __contentWasChanged(self):
        emitted = self.wasChanged()
        if emitted:
            self.contentChanged.emit()
        else:
            self.__cacheContentWasChanged = True

    def unlockSignals(self):
        unlocked = AbstractModel.unlockSignals(self)
        if unlocked:
            if self.__cacheStructureWasChanged:
                self.structureChanged.emit()
            if self.__cacheContentWasChanged:
                self.contentChanged.emit()
        self.__cacheStructureWasChanged = False
        self.__cacheContentWasChanged = False
        return unlocked

    def clear(self):
        self.lockSignals()
        for peak in list(self.__peaks):
            self.remove(peak)
        self.unlockSignals()

    def index(self, peak):
        return self.__peaks.index(peak)

    def closestGroup(self, coord, threshold=None):
        """Returns the closest group from coord.

        :param Tuple[float,float]: Position coord to search around.
        :param float threshold: If specified, filter out groups when the
            distance is highter than this value.
        """
        closestGroup = None
        closestDistance = None
        for p in self.__peaks:
            distance = p.distanceTo(coord)
            if distance is None:
                continue
            if closestDistance is None or distance < closestDistance:
                closestDistance = distance
                closestGroup = p
        if closestDistance is not None and closestDistance > threshold:
            return None
        return closestGroup
