from rpython.rtyper.annlowlevel import cast_instance_to_gcref
from rpython.rlib.debug import debug_print, debug_start, debug_stop
from rpython.jit.backend.llsupport.regalloc import FrameManager, \
        RegisterManager, TempVar, compute_vars_longevity, BaseRegalloc, \
        get_scale
from rpython.jit.backend.arm import registers as r
from rpython.jit.backend.arm import conditions as c
from rpython.jit.backend.arm import locations
from rpython.jit.backend.arm.locations import imm, get_fp_offset
from rpython.jit.backend.arm.helper.regalloc import (
                                                    prepare_unary_cmp,
                                                    prepare_op_ri,
                                                    prepare_int_cmp,
                                                    prepare_unary_op,
                                                    prepare_two_regs_op,
                                                    prepare_float_cmp,
                                                    check_imm_arg,
                                                    check_imm_box,
                                                    VMEM_imm_size,
                                                    default_imm_size,
                                                    )
from rpython.jit.backend.arm.jump import remap_frame_layout_mixed
from rpython.jit.backend.arm.arch import WORD, JITFRAME_FIXED_SIZE
from rpython.jit.codewriter import longlong
from rpython.jit.metainterp.history import (Const, ConstInt, ConstFloat,
                                            ConstPtr,
                                            INT, REF, FLOAT)
from rpython.jit.metainterp.history import TargetToken
from rpython.jit.metainterp.resoperation import rop
from rpython.jit.backend.llsupport.descr import ArrayDescr
from rpython.jit.backend.llsupport.gcmap import allocate_gcmap
from rpython.jit.backend.llsupport import symbolic
from rpython.rtyper.lltypesystem import lltype, rffi, rstr, llmemory
from rpython.rtyper.lltypesystem.lloperation import llop
from rpython.jit.codewriter.effectinfo import EffectInfo
from rpython.rlib.rarithmetic import r_uint
from rpython.jit.backend.llsupport.descr import CallDescr


class TempInt(TempVar):
    type = INT

    def __repr__(self):
        return "<TempInt at %s>" % (id(self),)


class TempPtr(TempVar):
    type = REF

    def __repr__(self):
        return "<TempPtr at %s>" % (id(self),)


class TempFloat(TempVar):
    type = FLOAT

    def __repr__(self):
        return "<TempFloat at %s>" % (id(self),)



class ARMFrameManager(FrameManager):

    def __init__(self, base_ofs):
        FrameManager.__init__(self)
        self.base_ofs = base_ofs

    def frame_pos(self, i, box_type):
        return locations.StackLocation(i, get_fp_offset(self.base_ofs, i), box_type)

    @staticmethod
    def frame_size(type):
        if type == FLOAT:
            return  2
        return 1

    @staticmethod
    def get_loc_index(loc):
        assert loc.is_stack()
        return loc.position


def void(self, op, fcond):
    return []

class ARMRegisterManager(RegisterManager):
    def return_constant(self, v, forbidden_vars=[], selected_reg=None):
        self._check_type(v)
        if isinstance(v, Const):
            if isinstance(v, ConstPtr):
                tp = REF
            elif isinstance(v, ConstFloat):
                tp = FLOAT
            else:
                tp = INT
            loc = self.get_scratch_reg(tp,
                    self.temp_boxes + forbidden_vars,
                    selected_reg=selected_reg)
            immvalue = self.convert_to_imm(v)
            self.assembler.load(loc, immvalue)
            return loc
        else:
            return RegisterManager.return_constant(self, v,
                                    forbidden_vars, selected_reg)


class VFPRegisterManager(ARMRegisterManager):
    all_regs = r.all_vfp_regs
    box_types = [FLOAT]
    save_around_call_regs = r.all_vfp_regs

    def convert_to_imm(self, c):
        adr = self.assembler.datablockwrapper.malloc_aligned(8, 8)
        x = c.getfloatstorage()
        rffi.cast(rffi.CArrayPtr(longlong.FLOATSTORAGE), adr)[0] = x
        return locations.ConstFloatLoc(adr)

    def __init__(self, longevity, frame_manager=None, assembler=None):
        RegisterManager.__init__(self, longevity, frame_manager, assembler)

    def after_call(self, v):
        """ Adjust registers according to the result of the call,
        which is in variable v.
        """
        self._check_type(v)
        reg = self.force_allocate_reg(v, selected_reg=r.d0)
        return reg

    def get_scratch_reg(self, type=FLOAT, forbidden_vars=[], selected_reg=None):
        assert type == FLOAT  # for now
        box = TempFloat()
        self.temp_boxes.append(box)
        reg = self.force_allocate_reg(box, forbidden_vars=forbidden_vars,
                                                    selected_reg=selected_reg)
        return reg


class CoreRegisterManager(ARMRegisterManager):
    all_regs = r.all_regs
    box_types = None       # or a list of acceptable types
    no_lower_byte_regs = all_regs
    save_around_call_regs = r.caller_resp
    frame_reg = r.fp

    def __init__(self, longevity, frame_manager=None, assembler=None):
        RegisterManager.__init__(self, longevity, frame_manager, assembler)

    def call_result_location(self, v):
        return r.r0

    def convert_to_imm(self, c):
        if isinstance(c, ConstInt):
            val = rffi.cast(rffi.INT, c.value)
            return locations.ImmLocation(val)
        else:
            assert isinstance(c, ConstPtr)
            return locations.ImmLocation(rffi.cast(lltype.Signed, c.value))
        assert 0

    def get_scratch_reg(self, type=INT, forbidden_vars=[], selected_reg=None):
        assert type == INT or type == REF
        box = None
        if type == INT:
            box = TempInt()
        else:
            box = TempPtr()
        self.temp_boxes.append(box)
        reg = self.force_allocate_reg(box, forbidden_vars=forbidden_vars,
                                                    selected_reg=selected_reg)
        return reg

    def get_free_reg(self):
        free_regs = self.free_regs
        for i in range(len(free_regs) - 1, -1, -1):
            if free_regs[i] in self.save_around_call_regs:
                continue
            return free_regs[i]


class Regalloc(BaseRegalloc):

    def __init__(self, assembler):
        self.cpu = assembler.cpu
        self.assembler = assembler
        self.frame_manager = None
        self.jump_target_descr = None
        self.final_jump_op = None

    def loc(self, var):
        if var.type == FLOAT:
            return self.vfprm.loc(var)
        else:
            return self.rm.loc(var)

    def position(self):
        return self.rm.position

    def next_instruction(self):
        self.rm.next_instruction()
        self.vfprm.next_instruction()

    def _check_invariants(self):
        self.rm._check_invariants()
        self.vfprm._check_invariants()

    def stays_alive(self, v):
        if v.type == FLOAT:
            return self.vfprm.stays_alive(v)
        else:
            return self.rm.stays_alive(v)

    def call_result_location(self, v):
        if v.type == FLOAT:
            return self.vfprm.call_result_location(v)
        else:
            return self.rm.call_result_location(v)

    def after_call(self, v):
        if v.type == 'v':
            return
        if v.type == FLOAT:
            return self.vfprm.after_call(v)
        else:
            return self.rm.after_call(v)

    def force_allocate_reg(self, var, forbidden_vars=[], selected_reg=None,
                           need_lower_byte=False):
        if var.type == FLOAT:
            return self.vfprm.force_allocate_reg(var, forbidden_vars,
                                               selected_reg, need_lower_byte)
        else:
            return self.rm.force_allocate_reg(var, forbidden_vars,
                                              selected_reg, need_lower_byte)

    def force_allocate_reg_or_cc(self, var, forbidden_vars=[]):
        assert var.type == INT
        if self.next_op_can_accept_cc(self.operations, self.rm.position):
            # hack: return the 'fp' location to mean "lives in CC".  This
            # fp will not actually be used, and the location will be freed
            # after the next op as usual.
            self.rm.force_allocate_frame_reg(var)
            return r.fp
        else:
            # else, return a regular register (not fp).
            return self.rm.force_allocate_reg(var)

    def try_allocate_reg(self, v, selected_reg=None, need_lower_byte=False):
        if v.type == FLOAT:
            return self.vfprm.try_allocate_reg(v, selected_reg,
                                                            need_lower_byte)
        else:
            return self.rm.try_allocate_reg(v, selected_reg, need_lower_byte)

    def possibly_free_var(self, var):
        if var.type == FLOAT:
            self.vfprm.possibly_free_var(var)
        else:
            self.rm.possibly_free_var(var)

    def possibly_free_vars_for_op(self, op):
        for i in range(op.numargs()):
            var = op.getarg(i)
            if var is not None:  # xxx kludgy
                self.possibly_free_var(var)

    def possibly_free_vars(self, vars):
        for var in vars:
            if var is not None:  # xxx kludgy
                self.possibly_free_var(var)

    def get_scratch_reg(self, type, forbidden_vars=[], selected_reg=None):
        if type == FLOAT:
            return self.vfprm.get_scratch_reg(type, forbidden_vars,
                                                                selected_reg)
        else:
            return self.rm.get_scratch_reg(type, forbidden_vars, selected_reg)

    def get_free_reg(self):
        return self.rm.get_free_reg()

    def free_temp_vars(self):
        self.rm.free_temp_vars()
        self.vfprm.free_temp_vars()

    def make_sure_var_in_reg(self, var, forbidden_vars=[],
                         selected_reg=None, need_lower_byte=False):
        if var.type == FLOAT:
            return self.vfprm.make_sure_var_in_reg(var, forbidden_vars,
                                        selected_reg, need_lower_byte)
        else:
            return self.rm.make_sure_var_in_reg(var, forbidden_vars,
                                        selected_reg, need_lower_byte)

    def convert_to_imm(self, value):
        if isinstance(value, ConstInt):
            return self.rm.convert_to_imm(value)
        else:
            assert isinstance(value, ConstFloat)
            return self.vfprm.convert_to_imm(value)

    def _prepare(self, inputargs, operations, allgcrefs):
        cpu = self.cpu
        self.fm = ARMFrameManager(cpu.get_baseofs_of_frame_field())
        self.frame_manager = self.fm
        operations = cpu.gc_ll_descr.rewrite_assembler(cpu, operations,
                                                       allgcrefs)
        # compute longevity of variables
        longevity, last_real_usage = compute_vars_longevity(inputargs, operations)
        self.longevity = longevity
        self.last_real_usage = last_real_usage
        fm = self.frame_manager
        asm = self.assembler
        self.vfprm = VFPRegisterManager(longevity, fm, asm)
        self.rm = CoreRegisterManager(longevity, fm, asm)
        return operations

    def prepare_loop(self, inputargs, operations, looptoken, allgcrefs):
        operations = self._prepare(inputargs, operations, allgcrefs)
        self._set_initial_bindings(inputargs, looptoken)
        self.possibly_free_vars(list(inputargs))
        return operations

    def prepare_bridge(self, inputargs, arglocs, operations, allgcrefs,
                       frame_info):
        operations = self._prepare(inputargs, operations, allgcrefs)
        self._update_bindings(arglocs, inputargs)
        return operations

    def get_final_frame_depth(self):
        return self.frame_manager.get_frame_depth()

    def _update_bindings(self, locs, inputargs):
        used = {}
        i = 0
        for loc in locs:
            if loc is None:
                loc = r.fp
            arg = inputargs[i]
            i += 1
            if loc.is_core_reg():
                self.rm.reg_bindings[arg] = loc
                used[loc] = None
            elif loc.is_vfp_reg():
                self.vfprm.reg_bindings[arg] = loc
                used[loc] = None
            else:
                assert loc.is_stack()
                self.frame_manager.bind(arg, loc)

        # XXX combine with x86 code and move to llsupport
        self.rm.free_regs = []
        for reg in self.rm.all_regs:
            if reg not in used:
                self.rm.free_regs.append(reg)
        self.vfprm.free_regs = []
        for reg in self.vfprm.all_regs:
            if reg not in used:
                self.vfprm.free_regs.append(reg)
        # note: we need to make a copy of inputargs because possibly_free_vars
        # is also used on op args, which is a non-resizable list
        self.possibly_free_vars(list(inputargs))
        self.fm.finish_binding()
        self._check_invariants()

    def get_gcmap(self, forbidden_regs=[], noregs=False):
        frame_depth = self.fm.get_frame_depth()
        gcmap = allocate_gcmap(self.assembler,
                        frame_depth, JITFRAME_FIXED_SIZE)
        for box, loc in self.rm.reg_bindings.iteritems():
            if loc in forbidden_regs:
                continue
            if box.type == REF and self.rm.is_still_alive(box):
                assert not noregs
                assert loc.is_core_reg()
                val = loc.value
                gcmap[val // WORD // 8] |= r_uint(1) << (val % (WORD * 8))
        for box, loc in self.fm.bindings.iteritems():
            if box.type == REF and self.rm.is_still_alive(box):
                assert loc.is_stack()
                val = loc.position + JITFRAME_FIXED_SIZE
                gcmap[val // WORD // 8] |= r_uint(1) << (val % (WORD * 8))
        return gcmap

    # ------------------------------------------------------------
    def perform_enter_portal_frame(self, op):
        self.assembler.enter_portal_frame(op)

    def perform_leave_portal_frame(self, op):
        self.assembler.leave_portal_frame(op)

    def perform_extra(self, op, args, fcond):
        return self.assembler.regalloc_emit_extra(op, args, fcond, self)

    def force_spill_var(self, var):
        if var.type == FLOAT:
            self.vfprm.force_spill_var(var)
        else:
            self.rm.force_spill_var(var)

    def before_call(self, save_all_regs=False):
        self.rm.before_call(save_all_regs=save_all_regs)
        self.vfprm.before_call(save_all_regs=save_all_regs)

    def _sync_var(self, v):
        if v.type == FLOAT:
            self.vfprm._sync_var(v)
        else:
            self.rm._sync_var(v)

    def _prepare_op_int_add(self, op, fcond):
        boxes = op.getarglist()
        a0, a1 = boxes
        imm_a0 = check_imm_box(a0)
        imm_a1 = check_imm_box(a1)
        if not imm_a0 and imm_a1:
            l0 = self.make_sure_var_in_reg(a0, boxes)
            l1 = self.convert_to_imm(a1)
        elif imm_a0 and not imm_a1:
            l0 = self.convert_to_imm(a0)
            l1 = self.make_sure_var_in_reg(a1, boxes)
        else:
            l0 = self.make_sure_var_in_reg(a0, boxes)
            l1 = self.make_sure_var_in_reg(a1, boxes)
        return [l0, l1]

    def prepare_op_int_add(self, op, fcond):
        locs = self._prepare_op_int_add(op, fcond)
        self.possibly_free_vars_for_op(op)
        self.free_temp_vars()
        res = self.force_allocate_reg(op)
        return locs + [res]

    prepare_op_nursery_ptr_increment = prepare_op_int_add

    def _prepare_op_int_sub(self, op, fcond):
        a0, a1 = boxes = op.getarglist()
        imm_a0 = check_imm_box(a0)
        imm_a1 = check_imm_box(a1)
        if not imm_a0 and imm_a1:
            l0 = self.make_sure_var_in_reg(a0, boxes)
            l1 = self.convert_to_imm(a1)
        elif imm_a0 and not imm_a1:
            l0 = self.convert_to_imm(a0)
            l1 = self.make_sure_var_in_reg(a1, boxes)
        else:
            l0 = self.make_sure_var_in_reg(a0, boxes)
            l1 = self.make_sure_var_in_reg(a1, boxes)
        return [l0, l1]

    def prepare_op_int_sub(self, op, fcond):
        locs = self._prepare_op_int_sub(op, fcond)
        self.possibly_free_vars_for_op(op)
        self.free_temp_vars()
        res = self.force_allocate_reg(op)
        return locs + [res]

    def prepare_op_int_mul(self, op, fcond):
        boxes = op.getarglist()
        a0, a1 = boxes

        reg1 = self.make_sure_var_in_reg(a0, forbidden_vars=boxes)
        reg2 = self.make_sure_var_in_reg(a1, forbidden_vars=boxes)

        self.possibly_free_vars(boxes)
        self.possibly_free_vars_for_op(op)
        res = self.force_allocate_reg(op)
        self.possibly_free_var(op)
        return [reg1, reg2, res]

    prepare_op_uint_mul_high = prepare_op_int_mul

    def prepare_op_int_force_ge_zero(self, op, fcond):
        argloc = self.make_sure_var_in_reg(op.getarg(0))
        resloc = self.force_allocate_reg(op, [op.getarg(0)])
        return [argloc, resloc]

    def prepare_op_int_signext(self, op, fcond):
        argloc = self.make_sure_var_in_reg(op.getarg(0))
        numbytes = op.getarg(1).getint()
        resloc = self.force_allocate_reg(op)
        return [argloc, imm(numbytes), resloc]

    prepare_op_int_and = prepare_op_ri('int_and')
    prepare_op_int_or = prepare_op_ri('int_or')
    prepare_op_int_xor = prepare_op_ri('int_xor')
    prepare_op_int_lshift = prepare_op_ri('int_lshift', imm_size=0x1F,
                                        allow_zero=False, commutative=False)
    prepare_op_int_rshift = prepare_op_ri('int_rshift', imm_size=0x1F,
                                        allow_zero=False, commutative=False)
    prepare_op_uint_rshift = prepare_op_ri('uint_rshift', imm_size=0x1F,
                                        allow_zero=False, commutative=False)

    prepare_op_int_lt = prepare_int_cmp
    prepare_op_int_le = prepare_int_cmp
    prepare_op_int_eq = prepare_int_cmp
    prepare_op_int_ne = prepare_int_cmp
    prepare_op_int_gt = prepare_int_cmp
    prepare_op_int_ge = prepare_int_cmp

    prepare_op_uint_le = prepare_int_cmp
    prepare_op_uint_gt = prepare_int_cmp

    prepare_op_uint_lt = prepare_int_cmp
    prepare_op_uint_ge = prepare_int_cmp

    prepare_op_ptr_eq = prepare_op_instance_ptr_eq = prepare_op_int_eq
    prepare_op_ptr_ne = prepare_op_instance_ptr_ne = prepare_op_int_ne

    prepare_op_int_add_ovf = prepare_op_int_add
    prepare_op_int_sub_ovf = prepare_op_int_sub
    prepare_op_int_mul_ovf = prepare_op_int_mul

    prepare_op_int_is_true = prepare_unary_cmp
    prepare_op_int_is_zero = prepare_unary_cmp

    prepare_op_int_neg = prepare_unary_op
    prepare_op_int_invert = prepare_unary_op

    def _prepare_op_call(self, op, fcond):
        calldescr = op.getdescr()
        assert calldescr is not None
        effectinfo = calldescr.get_extra_info()
        if effectinfo is not None:
            oopspecindex = effectinfo.oopspecindex
            if oopspecindex in (EffectInfo.OS_LLONG_ADD,
                            EffectInfo.OS_LLONG_SUB,
                            EffectInfo.OS_LLONG_AND,
                            EffectInfo.OS_LLONG_OR,
                            EffectInfo.OS_LLONG_XOR):
                if self.cpu.cpuinfo.neon:
                    args = self._prepare_llong_binop_xx(op, fcond)
                    self.perform_extra(op, args, fcond)
                    return
            elif oopspecindex == EffectInfo.OS_LLONG_TO_INT:
                args = self._prepare_llong_to_int(op, fcond)
                self.perform_extra(op, args, fcond)
                return
            elif oopspecindex == EffectInfo.OS_MATH_SQRT:
                args = self._prepare_op_math_sqrt(op, fcond)
                self.perform_extra(op, args, fcond)
                return
            elif oopspecindex == EffectInfo.OS_THREADLOCALREF_GET:
                args = self._prepare_threadlocalref_get(op, fcond)
                self.perform_extra(op, args, fcond)
                return
            #elif oopspecindex == EffectInfo.OS_MATH_READ_TIMESTAMP:
            #    ...
        return self._prepare_call(op)

    prepare_op_call_i = _prepare_op_call
    prepare_op_call_r = _prepare_op_call
    prepare_op_call_f = _prepare_op_call
    prepare_op_call_n = _prepare_op_call

    def _prepare_call(self, op, save_all_regs=False, first_arg_index=1):
        args = [None] * (op.numargs() + 3)
        calldescr = op.getdescr()
        assert isinstance(calldescr, CallDescr)
        assert len(calldescr.arg_classes) == op.numargs() - first_arg_index

        for i in range(op.numargs()):
            args[i + 3] = self.loc(op.getarg(i))

        size = calldescr.get_result_size()
        sign = calldescr.is_result_signed()
        if sign:
            sign_loc = imm(1)
        else:
            sign_loc = imm(0)
        args[1] = imm(size)
        args[2] = sign_loc

        effectinfo = calldescr.get_extra_info()
        if save_all_regs:
            gc_level = 2
        elif effectinfo is None or effectinfo.check_can_collect():
            gc_level = 1
        else:
            gc_level = 0

        args[0] = self._call(op, args, gc_level)
        return args

    def _call(self, op, arglocs, gc_level):
        # spill variables that need to be saved around calls:
        # gc_level == 0: callee cannot invoke the GC
        # gc_level == 1: can invoke GC, save all regs that contain pointers
        # gc_level == 2: can force, save all regs
        save_all_regs = gc_level == 2
        self.vfprm.before_call(save_all_regs=save_all_regs)
        if gc_level == 1 and self.cpu.gc_ll_descr.gcrootmap:
            save_all_regs = 2
        self.rm.before_call(save_all_regs=save_all_regs)
        resloc = self.after_call(op)
        return resloc

    def prepare_op_check_memory_error(self, op, fcond):
        argloc = self.make_sure_var_in_reg(op.getarg(0))
        return [argloc]

    def _prepare_llong_binop_xx(self, op, fcond):
        # arg 0 is the address of the function
        loc0 = self.make_sure_var_in_reg(op.getarg(1))
        loc1 = self.make_sure_var_in_reg(op.getarg(2))
        self.possibly_free_vars_for_op(op)
        self.free_temp_vars()
        res = self.vfprm.force_allocate_reg(op)
        return [loc0, loc1, res]

    def _prepare_llong_to_int(self, op, fcond):
        loc0 = self.make_sure_var_in_reg(op.getarg(1))
        res = self.force_allocate_reg(op)
        return [loc0, res]

    def _prepare_threadlocalref_get(self, op, fcond):
        ofs_loc = imm(op.getarg(1).getint())
        calldescr = op.getdescr()
        size_loc = imm(calldescr.get_result_size())
        sign_loc = imm(calldescr.is_result_signed())
        res_loc = self.force_allocate_reg(op)
        return [ofs_loc, size_loc, sign_loc, res_loc]

    def _prepare_guard(self, op, args=None):
        if args is None:
            args = []
        args.append(imm(self.frame_manager.get_frame_depth()))
        for arg in op.getfailargs():
            if arg:
                args.append(self.loc(arg))
            else:
                args.append(None)
        return args

    def prepare_op_finish(self, op, fcond):
        # the frame is in fp, but we have to point where in the frame is
        # the potential argument to FINISH
        if op.numargs() == 1:
            loc = self.make_sure_var_in_reg(op.getarg(0))
            locs = [loc]
        else:
            locs = []
        return locs

    def load_condition_into_cc(self, box):
        if self.assembler.guard_success_cc == c.cond_none:
            loc = self.loc(box)
            if not loc.is_core_reg():
                assert loc.is_stack()
                self.assembler.regalloc_mov(loc, r.lr)
                loc = r.lr
            self.assembler.mc.CMP_ri(loc.value, 0)
            self.assembler.guard_success_cc = c.NE

    def _prepare_guard_cc(self, op, fcond):
        self.load_condition_into_cc(op.getarg(0))
        args = self._prepare_guard(op, [])
        return args

    prepare_op_guard_true = _prepare_guard_cc
    prepare_op_guard_false = _prepare_guard_cc
    prepare_op_guard_nonnull = _prepare_guard_cc
    prepare_op_guard_isnull = _prepare_guard_cc

    def prepare_op_guard_value(self, op, fcond):
        boxes = op.getarglist()
        a0, a1 = boxes
        imm_a1 = check_imm_box(a1)
        l0 = self.make_sure_var_in_reg(a0, boxes)
        op.getdescr().make_a_counter_per_value(op,
            self.cpu.all_reg_indexes[l0.value])
        if not imm_a1:
            l1 = self.make_sure_var_in_reg(a1, boxes)
        else:
            l1 = self.convert_to_imm(a1)
        arglocs = self._prepare_guard(op, [l0, l1])
        self.possibly_free_vars(op.getarglist())
        self.possibly_free_vars(op.getfailargs())
        return arglocs

    def prepare_op_guard_no_overflow(self, op, fcond):
        locs = self._prepare_guard(op)
        self.possibly_free_vars(op.getfailargs())
        return locs

    prepare_op_guard_overflow = prepare_op_guard_no_overflow
    prepare_op_guard_not_invalidated = prepare_op_guard_no_overflow
    prepare_op_guard_not_forced = prepare_op_guard_no_overflow

    def prepare_op_guard_exception(self, op, fcond):
        boxes = op.getarglist()
        arg0 = ConstInt(rffi.cast(lltype.Signed, op.getarg(0).getint()))
        loc = self.make_sure_var_in_reg(arg0)
        loc1 = self.get_scratch_reg(INT, boxes)
        if op in self.longevity:
            resloc = self.force_allocate_reg(op, boxes)
            self.possibly_free_var(op)
        else:
            resloc = None
        pos_exc_value = imm(self.cpu.pos_exc_value())
        pos_exception = imm(self.cpu.pos_exception())
        arglocs = self._prepare_guard(op,
                    [loc, loc1, resloc, pos_exc_value, pos_exception])
        return arglocs

    def prepare_op_save_exception(self, op, fcond):
        resloc = self.force_allocate_reg(op)
        return [resloc]
    prepare_op_save_exc_class = prepare_op_save_exception

    def prepare_op_restore_exception(self, op, fcond):
        boxes = op.getarglist()
        loc0 = self.make_sure_var_in_reg(op.getarg(0), boxes)  # exc class
        loc1 = self.make_sure_var_in_reg(op.getarg(1), boxes)  # exc instance
        return [loc0, loc1]

    def prepare_op_guard_no_exception(self, op, fcond):
        loc = self.make_sure_var_in_reg(ConstInt(self.cpu.pos_exception()))
        arglocs = self._prepare_guard(op, [loc])
        return arglocs

    def prepare_op_guard_class(self, op, fcond):
        assert not isinstance(op.getarg(0), Const)
        boxes = op.getarglist()

        x = self.make_sure_var_in_reg(boxes[0], boxes)
        y_val = rffi.cast(lltype.Signed, boxes[1].getint())
        return self._prepare_guard(op, [x, imm(y_val)])

    prepare_op_guard_nonnull_class = prepare_op_guard_class
    prepare_op_guard_gc_type = prepare_op_guard_class
    prepare_op_guard_subclass = prepare_op_guard_class

    def prepare_op_guard_is_object(self, op, fcond):
        loc_object = self.make_sure_var_in_reg(op.getarg(0))
        return self._prepare_guard(op, [loc_object])

    def compute_hint_frame_locations(self, operations):
        # optimization only: fill in the 'hint_frame_locations' dictionary
        # of rm and xrm based on the JUMP at the end of the loop, by looking
        # at where we would like the boxes to be after the jump.
        op = operations[-1]
        if op.getopnum() != rop.JUMP:
            return
        self.final_jump_op = op
        descr = op.getdescr()
        assert isinstance(descr, TargetToken)
        if descr._ll_loop_code != 0:
            # if the target LABEL was already compiled, i.e. if it belongs
            # to some already-compiled piece of code
            self._compute_hint_frame_locations_from_descr(descr)
        #else:
        #   The loop ends in a JUMP going back to a LABEL in the same loop.
        #   We cannot fill 'hint_frame_locations' immediately, but we can
        #   wait until the corresponding prepare_op_label() to know where the
        #   we would like the boxes to be after the jump.

    def _compute_hint_frame_locations_from_descr(self, descr):
        arglocs = self.assembler.target_arglocs(descr)
        jump_op = self.final_jump_op
        assert len(arglocs) == jump_op.numargs()
        for i in range(jump_op.numargs()):
            box = jump_op.getarg(i)
            if not isinstance(box, Const):
                loc = arglocs[i]
                if loc is not None and loc.is_stack():
                    self.frame_manager.hint_frame_pos[box] = (
                        self.fm.get_loc_index(loc))

    def prepare_op_jump(self, op, fcond):
        assert self.jump_target_descr is None
        descr = op.getdescr()
        assert isinstance(descr, TargetToken)
        self.jump_target_descr = descr
        arglocs = self.assembler.target_arglocs(descr)

        # get temporary locs
        tmploc = r.ip
        vfptmploc = r.vfp_ip

        # Part about non-floats
        src_locations1 = []
        dst_locations1 = []
        # Part about floats
        src_locations2 = []
        dst_locations2 = []

        # Build the four lists
        for i in range(op.numargs()):
            box = op.getarg(i)
            src_loc = self.loc(box)
            dst_loc = arglocs[i]
            if box.type != FLOAT:
                src_locations1.append(src_loc)
                dst_locations1.append(dst_loc)
            else:
                src_locations2.append(src_loc)
                dst_locations2.append(dst_loc)
        self.assembler.check_frame_before_jump(self.jump_target_descr)
        remap_frame_layout_mixed(self.assembler,
                                 src_locations1, dst_locations1, tmploc,
                                 src_locations2, dst_locations2, vfptmploc)
        return []

    def prepare_op_gc_store(self, op, fcond):
        boxes = op.getarglist()
        base_loc = self.make_sure_var_in_reg(boxes[0], boxes)
        ofs = boxes[1].getint()
        value_loc = self.make_sure_var_in_reg(boxes[2], boxes)
        size = boxes[3].getint()
        ofs_size = default_imm_size if size < 8 else VMEM_imm_size
        if check_imm_arg(ofs, size=ofs_size):
            ofs_loc = imm(ofs)
        else:
            ofs_loc = self.get_scratch_reg(INT, boxes)
            self.assembler.load(ofs_loc, imm(ofs))
        return [value_loc, base_loc, ofs_loc, imm(size)]

    def _prepare_op_gc_load(self, op, fcond):
        a0 = op.getarg(0)
        ofs = op.getarg(1).getint()
        nsize = op.getarg(2).getint()    # negative for "signed"
        base_loc = self.make_sure_var_in_reg(a0)
        immofs = imm(ofs)
        ofs_size = default_imm_size if abs(nsize) < 8 else VMEM_imm_size
        if check_imm_arg(ofs, size=ofs_size):
            ofs_loc = immofs
        else:
            ofs_loc = self.get_scratch_reg(INT, [a0])
            self.assembler.load(ofs_loc, immofs)
        self.possibly_free_vars_for_op(op)
        self.free_temp_vars()
        res_loc = self.force_allocate_reg(op)
        return [base_loc, ofs_loc, res_loc, imm(nsize)]

    prepare_op_gc_load_i = _prepare_op_gc_load
    prepare_op_gc_load_r = _prepare_op_gc_load
    prepare_op_gc_load_f = _prepare_op_gc_load

    def prepare_op_increment_debug_counter(self, op, fcond):
        boxes = op.getarglist()
        a0, = boxes
        base_loc = self.make_sure_var_in_reg(a0, boxes)
        value_loc = self.get_scratch_reg(INT, boxes)
        self.free_temp_vars()
        return [base_loc, value_loc]

    def prepare_op_gc_store_indexed(self, op, fcond):
        boxes = op.getarglist()
        base_loc = self.make_sure_var_in_reg(boxes[0], boxes)
        value_loc = self.make_sure_var_in_reg(boxes[2], boxes)
        index_loc = self.make_sure_var_in_reg(boxes[1], boxes)
        assert boxes[3].getint() == 1    # scale
        ofs = boxes[4].getint()
        size = boxes[5].getint()
        assert check_imm_arg(ofs)
        return [value_loc, base_loc, index_loc, imm(size), imm(ofs)]

    def _prepare_op_gc_load_indexed(self, op, fcond):
        boxes = op.getarglist()
        base_loc = self.make_sure_var_in_reg(boxes[0], boxes)
        index_loc = self.make_sure_var_in_reg(boxes[1], boxes)
        assert boxes[2].getint() == 1    # scale
        ofs = boxes[3].getint()
        nsize = boxes[4].getint()
        assert check_imm_arg(ofs)
        self.possibly_free_vars_for_op(op)
        self.free_temp_vars()
        res_loc = self.force_allocate_reg(op)
        return [res_loc, base_loc, index_loc, imm(nsize), imm(ofs)]

    prepare_op_gc_load_indexed_i = _prepare_op_gc_load_indexed
    prepare_op_gc_load_indexed_r = _prepare_op_gc_load_indexed
    prepare_op_gc_load_indexed_f = _prepare_op_gc_load_indexed

    prepare_op_copystrcontent = void
    prepare_op_copyunicodecontent = void
    prepare_op_zero_array = void

    def _prepare_op_same_as(self, op, fcond):
        arg = op.getarg(0)
        imm_arg = check_imm_box(arg)
        if imm_arg:
            argloc = self.convert_to_imm(arg)
        else:
            argloc = self.make_sure_var_in_reg(arg)
        self.possibly_free_vars_for_op(op)
        self.free_temp_vars()
        resloc = self.force_allocate_reg(op)
        return [argloc, resloc]

    prepare_op_cast_ptr_to_int = _prepare_op_same_as
    prepare_op_cast_int_to_ptr = _prepare_op_same_as
    prepare_op_same_as_i = _prepare_op_same_as
    prepare_op_same_as_r = _prepare_op_same_as
    prepare_op_same_as_f = _prepare_op_same_as

    def prepare_op_load_from_gc_table(self, op, fcond):
        resloc = self.force_allocate_reg(op)
        return [resloc]

    def prepare_op_call_malloc_nursery(self, op, fcond):
        size_box = op.getarg(0)
        assert isinstance(size_box, ConstInt)
        size = size_box.getint()
        # hint: try to move unrelated registers away from r0 and r1 now
        self.rm.spill_or_move_registers_before_call([r.r0, r.r1])

        self.rm.force_allocate_reg(op, selected_reg=r.r0)
        t = TempInt()
        self.rm.force_allocate_reg(t, selected_reg=r.r1)

        sizeloc = size_box.getint()
        gc_ll_descr = self.cpu.gc_ll_descr
        gcmap = self.get_gcmap([r.r0, r.r1])
        self.possibly_free_var(t)
        self.assembler.malloc_cond(
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            sizeloc,
            gcmap
            )
        self.assembler._alignment_check()

    def prepare_op_call_malloc_nursery_varsize_frame(self, op, fcond):
        size_box = op.getarg(0)
        assert not isinstance(size_box, ConstInt) # we cannot have a const here!
        # sizeloc must be in a register, but we can free it now
        # (we take care explicitly of conflicts with r0 or r1)
        sizeloc = self.rm.make_sure_var_in_reg(size_box)
        self.rm.spill_or_move_registers_before_call([r.r0, r.r1]) # sizeloc safe
        self.rm.possibly_free_var(size_box)
        #
        self.rm.force_allocate_reg(op, selected_reg=r.r0)
        #
        t = TempInt()
        self.rm.force_allocate_reg(t, selected_reg=r.r1)
        #
        gcmap = self.get_gcmap([r.r0, r.r1])
        self.possibly_free_var(t)
        #
        gc_ll_descr = self.cpu.gc_ll_descr
        self.assembler.malloc_cond_varsize_frame(
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            sizeloc,
            gcmap
            )
        self.assembler._alignment_check()

    def prepare_op_call_malloc_nursery_varsize(self, op, fcond):
        gc_ll_descr = self.cpu.gc_ll_descr
        if not hasattr(gc_ll_descr, 'max_size_of_young_obj'):
            raise Exception("unreachable code")
            # for boehm, this function should never be called
        arraydescr = op.getdescr()
        length_box = op.getarg(2)
        assert not isinstance(length_box, Const) # we cannot have a const here!
        # can only use spill_or_move_registers_before_call() as a hint if
        # we are sure that length_box stays alive and won't be freed now
        # (it should always be the case, see below, but better safe than sorry)
        if self.rm.stays_alive(length_box):
            self.rm.spill_or_move_registers_before_call([r.r0, r.r1])
        # the result will be in r0
        self.rm.force_allocate_reg(op, selected_reg=r.r0)
        # we need r1 as a temporary
        tmp_box = TempVar()
        self.rm.force_allocate_reg(tmp_box, selected_reg=r.r1)
        gcmap = self.get_gcmap([r.r0, r.r1]) # allocate the gcmap *before*
        self.rm.possibly_free_var(tmp_box)
        # length_box always survives: it's typically also present in the
        # next operation that will copy it inside the new array.  It's
        # fine to load it from the stack too, as long as it's != r0, r1.
        lengthloc = self.rm.loc(length_box)
        self.rm.possibly_free_var(length_box)
        #
        itemsize = op.getarg(1).getint()
        maxlength = (gc_ll_descr.max_size_of_young_obj - WORD * 2) / itemsize
        self.assembler.malloc_cond_varsize(
            op.getarg(0).getint(),
            gc_ll_descr.get_nursery_free_addr(),
            gc_ll_descr.get_nursery_top_addr(),
            lengthloc, itemsize, maxlength, gcmap, arraydescr)

    prepare_op_debug_merge_point = void
    prepare_op_jit_debug = void
    prepare_op_keepalive = void
    prepare_op_enter_portal_frame = void
    prepare_op_leave_portal_frame = void

    def prepare_op_cond_call_gc_wb(self, op, fcond):
        # we force all arguments in a reg because it will be needed anyway by
        # the following gc_store. It avoids loading it twice from the memory.
        N = op.numargs()
        args = op.getarglist()
        arglocs = [self.make_sure_var_in_reg(op.getarg(i), args)
                                                              for i in range(N)]
        tmp = self.get_scratch_reg(INT, args)
        assert tmp not in arglocs
        arglocs.append(tmp)
        return arglocs

    prepare_op_cond_call_gc_wb_array = prepare_op_cond_call_gc_wb

    def prepare_op_cond_call(self, op, fcond):
        # XXX don't force the arguments to be loaded in specific
        # locations before knowing if we can take the fast path
        # XXX add cond_call_value support
        assert 2 <= op.numargs() <= 4 + 2
        tmpreg = self.get_scratch_reg(INT, selected_reg=r.r4)
        v = op.getarg(1)
        assert isinstance(v, Const)
        imm = self.rm.convert_to_imm(v)
        self.assembler.regalloc_mov(imm, tmpreg)
        args_so_far = []
        for i in range(2, op.numargs()):
            reg = r.argument_regs[i - 2]
            arg = op.getarg(i)
            self.make_sure_var_in_reg(arg, args_so_far, selected_reg=reg)
            args_so_far.append(arg)
        self.load_condition_into_cc(op.getarg(0))
        return [tmpreg]

    def prepare_op_force_token(self, op, fcond):
        # XXX for now we return a regular reg
        res_loc = self.force_allocate_reg(op)
        return [res_loc]

    def prepare_op_label(self, op, fcond):
        descr = op.getdescr()
        assert isinstance(descr, TargetToken)
        inputargs = op.getarglist()
        arglocs = [None] * len(inputargs)
        #
        # we use force_spill() on the boxes that are not going to be really
        # used any more in the loop, but that are kept alive anyway
        # by being in a next LABEL's or a JUMP's argument or fail_args
        # of some guard
        position = self.rm.position
        for arg in inputargs:
            assert not isinstance(arg, Const)
            if self.last_real_usage.get(arg, -1) <= position:
                self.force_spill_var(arg)

        #
        for i in range(len(inputargs)):
            arg = inputargs[i]
            assert not isinstance(arg, Const)
            loc = self.loc(arg)
            arglocs[i] = loc
            if loc.is_core_reg() or loc.is_vfp_reg():
                self.frame_manager.mark_as_free(arg)
        #
        descr._arm_arglocs = arglocs
        descr._ll_loop_code = self.assembler.mc.currpos()
        descr._arm_clt = self.assembler.current_clt
        self.assembler.target_tokens_currently_compiling[descr] = None
        self.possibly_free_vars_for_op(op)
        #
        # if the LABEL's descr is precisely the target of the JUMP at the
        # end of the same loop, i.e. if what we are compiling is a single
        # loop that ends up jumping to this LABEL, then we can now provide
        # the hints about the expected position of the spilled variables.
        jump_op = self.final_jump_op
        if jump_op is not None and jump_op.getdescr() is descr:
            self._compute_hint_frame_locations_from_descr(descr)
        return []

    def prepare_op_guard_not_forced_2(self, op, fcond):
        self.rm.before_call(op.getfailargs(), save_all_regs=True)
        self.vfprm.before_call(op.getfailargs(), save_all_regs=True)
        fail_locs = self._prepare_guard(op)
        self.assembler.store_force_descr(op, fail_locs[1:], fail_locs[0].value)
        self.possibly_free_vars(op.getfailargs())

    def _prepare_op_call_may_force(self, op, fcond):
        return self._prepare_call(op, save_all_regs=True)

    prepare_op_call_may_force_i = _prepare_op_call_may_force
    prepare_op_call_may_force_r = _prepare_op_call_may_force
    prepare_op_call_may_force_f = _prepare_op_call_may_force
    prepare_op_call_may_force_n = _prepare_op_call_may_force

    def _prepare_op_call_release_gil(self, op, fcond):
        return self._prepare_call(op, save_all_regs=True, first_arg_index=2)

    prepare_op_call_release_gil_i = _prepare_op_call_release_gil
    prepare_op_call_release_gil_f = _prepare_op_call_release_gil
    prepare_op_call_release_gil_n = _prepare_op_call_release_gil

    def _prepare_op_call_assembler(self, op, fcond):
        locs = self.locs_for_call_assembler(op)
        tmploc = self.get_scratch_reg(INT, selected_reg=r.r0)
        resloc = self._call(op, locs + [tmploc], gc_level=2)
        return locs + [resloc, tmploc]

    prepare_op_call_assembler_i = _prepare_op_call_assembler
    prepare_op_call_assembler_r = _prepare_op_call_assembler
    prepare_op_call_assembler_f = _prepare_op_call_assembler
    prepare_op_call_assembler_n = _prepare_op_call_assembler

    prepare_op_float_add = prepare_two_regs_op
    prepare_op_float_sub = prepare_two_regs_op
    prepare_op_float_mul = prepare_two_regs_op
    prepare_op_float_truediv = prepare_two_regs_op
    prepare_op_float_lt = prepare_float_cmp
    prepare_op_float_le = prepare_float_cmp
    prepare_op_float_eq = prepare_float_cmp
    prepare_op_float_ne = prepare_float_cmp
    prepare_op_float_gt = prepare_float_cmp
    prepare_op_float_ge = prepare_float_cmp
    prepare_op_float_neg = prepare_unary_op
    prepare_op_float_abs = prepare_unary_op

    def _prepare_op_math_sqrt(self, op, fcond):
        loc = self.make_sure_var_in_reg(op.getarg(1))
        self.possibly_free_vars_for_op(op)
        self.free_temp_vars()
        res = self.vfprm.force_allocate_reg(op)
        return [loc, res]

    def prepare_op_cast_float_to_int(self, op, fcond):
        loc1 = self.make_sure_var_in_reg(op.getarg(0))
        res = self.rm.force_allocate_reg(op)
        return [loc1, res]

    def prepare_op_cast_int_to_float(self, op, fcond):
        loc1 = self.make_sure_var_in_reg(op.getarg(0))
        res = self.vfprm.force_allocate_reg(op)
        return [loc1, res]

    def prepare_force_spill(self, op, fcond):
        self.force_spill_var(op.getarg(0))
        return []

    prepare_op_convert_float_bytes_to_longlong = prepare_unary_op
    prepare_op_convert_longlong_bytes_to_float = prepare_unary_op

    #def prepare_op_read_timestamp(self, op, fcond):
    #    loc = self.get_scratch_reg(INT)
    #    res = self.vfprm.force_allocate_reg(op)
    #    return [loc, res]

    def prepare_op_cast_float_to_singlefloat(self, op, fcond):
        loc1 = self.make_sure_var_in_reg(op.getarg(0))
        res = self.force_allocate_reg(op)
        return [loc1, res]

    def prepare_op_cast_singlefloat_to_float(self, op, fcond):
        loc1 = self.make_sure_var_in_reg(op.getarg(0))
        res = self.force_allocate_reg(op)
        return [loc1, res]


def notimplemented(self, op, fcond):
    print "[ARM/regalloc] %s not implemented" % op.getopname()
    raise NotImplementedError(op)


operations = [notimplemented] * (rop._LAST + 1)


for key, value in rop.__dict__.items():
    key = key.lower()
    if key.startswith('_'):
        continue
    methname = 'prepare_op_%s' % key
    if hasattr(Regalloc, methname):
        func = getattr(Regalloc, methname).im_func
        operations[value] = func
