from __future__ import annotations

from contextlib import ExitStack
from copy import deepcopy
from operator import mul
from typing import TYPE_CHECKING

import joblib
import numpy as np
import pandas as pd
import pytest
from dask.base import tokenize
from packaging.version import Version
from scipy import sparse

import anndata as ad
from anndata._core.index import _normalize_index
from anndata._core.views import (
    ArrayView,
    SparseCSCArrayView,
    SparseCSCMatrixView,
    SparseCSRArrayView,
    SparseCSRMatrixView,
)
from anndata.compat import CupyCSCMatrix, DaskArray
from anndata.tests.helpers import (
    BASE_MATRIX_PARAMS,
    CUPY_MATRIX_PARAMS,
    DASK_MATRIX_PARAMS,
    GEN_ADATA_DASK_ARGS,
    assert_equal,
    gen_adata,
    single_subset,
    slice_subset,
    subset_func,
)
from anndata.utils import asarray

if TYPE_CHECKING:
    from types import EllipsisType

IGNORE_SPARSE_EFFICIENCY_WARNING = pytest.mark.filterwarnings(
    "ignore:Changing the sparsity structure:scipy.sparse.SparseEfficiencyWarning"
)

# ------------------------------------------------------------------------------
# Some test data
# ------------------------------------------------------------------------------

# data matrix of shape n_obs x n_vars
X_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# annotation of observations / rows
obs_dict = dict(
    row_names=["name1", "name2", "name3"],  # row annotation
    oanno1=["cat1", "cat2", "cat2"],  # categorical annotation
    oanno2=["o1", "o2", "o3"],  # string annotation
    oanno3=[2.1, 2.2, 2.3],  # float annotation
)
# annotation of variables / columns
var_dict = dict(vanno1=[3.1, 3.2, 3.3])
# unstructured annotation
uns_dict = dict(oanno1_colors=["#000000", "#FFFFFF"], uns2=["some annotation"])

subset_func2 = subset_func


class NDArraySubclass(np.ndarray):
    def view(self, dtype=None, typ=None):
        return self


@pytest.fixture
def adata():
    adata = ad.AnnData(np.zeros((100, 100)))
    adata.obsm["o"] = np.zeros((100, 50))
    adata.varm["o"] = np.zeros((100, 50))
    return adata


@pytest.fixture(
    params=BASE_MATRIX_PARAMS + DASK_MATRIX_PARAMS + CUPY_MATRIX_PARAMS,
)
def matrix_type(request):
    return request.param


@pytest.fixture(params=BASE_MATRIX_PARAMS + DASK_MATRIX_PARAMS)
def matrix_type_no_gpu(request):
    return request.param


@pytest.fixture(params=BASE_MATRIX_PARAMS)
def matrix_type_base(request):
    return request.param


@pytest.fixture(params=["layers", "obsm", "varm"])
def mapping_name(request):
    return request.param


# ------------------------------------------------------------------------------
# The test functions
# ------------------------------------------------------------------------------


def test_views():
    X = np.array(X_list, dtype="int32")
    adata = ad.AnnData(X, obs=obs_dict, var=var_dict, uns=uns_dict)

    assert adata[:, 0].is_view
    assert adata[:, 0].X.tolist() == np.reshape([1, 4, 7], (3, 1)).tolist()

    adata[:2, 0].X = [0, 0]

    assert adata[:, 0].X.tolist() == np.reshape([0, 0, 7], (3, 1)).tolist()

    adata_subset = adata[:2, [0, 1]]

    assert adata_subset.is_view
    # now transition to actual object
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*\.obs.*"):
        adata_subset.obs["foo"] = range(2)
    assert not adata_subset.is_view

    assert adata_subset.obs["foo"].tolist() == list(range(2))


def test_convert_error():
    adata = ad.AnnData(np.array([[1, 2], [3, 0]]))
    no_array = [[1], []]

    if Version(np.__version__) >= Version("1.24"):
        stack = pytest.raises(ValueError, match=r"Failed to convert")
    else:
        stack = ExitStack()
        stack.enter_context(
            pytest.warns(
                np.VisibleDeprecationWarning,
                match=r"ndarray from ragged.*is deprecated",
            )
        )
        stack.enter_context(
            pytest.raises(ValueError, match=r"setting an array element with a sequence")
        )
    with stack:
        adata[:, 0].X = no_array


def test_view_subset_shapes():
    adata = gen_adata((20, 10), **GEN_ADATA_DASK_ARGS)

    view = adata[:, ::2]
    assert view.var.shape == (5, 8)
    assert {k: v.shape[0] for k, v in view.varm.items()} == {k: 5 for k in view.varm}


def test_modify_view_component(matrix_type, mapping_name, request):
    adata = ad.AnnData(
        np.zeros((10, 10)),
        **{mapping_name: dict(m=matrix_type(asarray(sparse.random(10, 10))))},
    )
    # Fix if and when dask supports tokenizing GPU arrays
    # https://github.com/dask/dask/issues/6718
    if isinstance(matrix_type(np.zeros((1, 1))), DaskArray):
        hash_func = tokenize
    else:
        hash_func = joblib.hash

    init_hash = hash_func(adata)

    subset = adata[:5, :][:, :5]
    assert subset.is_view
    m = getattr(subset, mapping_name)["m"]
    with pytest.warns(ad.ImplicitModificationWarning, match=rf".*\.{mapping_name}.*"):
        m[0, 0] = 100
    assert not subset.is_view
    assert getattr(subset, mapping_name)["m"][0, 0] == 100

    assert init_hash == hash_func(adata)

    if "sparse_array_dask_array" in request.node.callspec.id:
        msg = "sparse arrays in dask are generally expected to fail but in this case they do not"
        pytest.fail(msg)


@pytest.mark.parametrize("attr", ["obsm", "varm"])
def test_set_obsm_key(adata, attr):
    init_hash = joblib.hash(adata)

    orig_val = getattr(adata, attr)["o"].copy()
    subset = adata[:50] if attr == "obsm" else adata[:, :50]

    assert subset.is_view

    with pytest.warns(ad.ImplicitModificationWarning, match=rf".*\.{attr}\['o'\].*"):
        getattr(subset, attr)["o"] = new_val = np.ones((50, 20))

    assert not subset.is_view
    assert np.all(getattr(adata, attr)["o"] == orig_val)
    assert np.any(getattr(subset, attr)["o"] == new_val)

    assert init_hash == joblib.hash(adata)


def test_set_obs(adata, subset_func):
    init_hash = joblib.hash(adata)

    subset = adata[subset_func(adata.obs_names), :]

    new_obs = pd.DataFrame(
        dict(a=np.ones(subset.n_obs), b=np.ones(subset.n_obs)),
        index=subset.obs_names,
    )

    assert subset.is_view
    subset.obs = new_obs
    assert not subset.is_view
    assert np.all(subset.obs == new_obs)

    assert joblib.hash(adata) == init_hash


def test_set_var(adata, subset_func):
    init_hash = joblib.hash(adata)

    subset = adata[:, subset_func(adata.var_names)]

    new_var = pd.DataFrame(
        dict(a=np.ones(subset.n_vars), b=np.ones(subset.n_vars)),
        index=subset.var_names,
    )

    assert subset.is_view
    subset.var = new_var
    assert not subset.is_view
    assert np.all(subset.var == new_var)

    assert joblib.hash(adata) == init_hash


def test_drop_obs_column():
    adata = ad.AnnData(np.array(X_list, dtype="int32"), obs=obs_dict)

    subset = adata[:2]
    assert subset.is_view
    # returns a copy of obs
    assert subset.obs.drop(columns=["oanno1"]).columns.tolist() == ["oanno2", "oanno3"]
    assert subset.is_view
    # would modify obs, so it should actualize subset and not modify adata
    subset.obs.drop(columns=["oanno1"], inplace=True)
    assert not subset.is_view
    assert subset.obs.columns.tolist() == ["oanno2", "oanno3"]

    assert adata.obs.columns.tolist() == ["oanno1", "oanno2", "oanno3"]


def test_set_obsm(adata):
    init_hash = joblib.hash(adata)

    dim0_size = np.random.randint(2, adata.shape[0] - 1)
    dim1_size = np.random.randint(1, 99)
    orig_obsm_val = adata.obsm["o"].copy()
    subset_idx = np.random.choice(adata.obs_names, dim0_size, replace=False)

    subset = adata[subset_idx, :]
    assert subset.is_view
    subset.obsm = dict(o=np.ones((dim0_size, dim1_size)))
    assert not subset.is_view
    assert np.all(orig_obsm_val == adata.obsm["o"])  # Checking for mutation
    assert np.all(subset.obsm["o"] == np.ones((dim0_size, dim1_size)))

    subset = adata[subset_idx, :]
    subset_hash = joblib.hash(subset)
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.obsm = dict(o=np.ones((dim0_size + 1, dim1_size)))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
    assert subset_hash == joblib.hash(subset)

    # Only modification have been made to a view
    assert init_hash == joblib.hash(adata)


def test_set_varm(adata):
    init_hash = joblib.hash(adata)

    dim0_size = np.random.randint(2, adata.shape[1] - 1)
    dim1_size = np.random.randint(1, 99)
    orig_varm_val = adata.varm["o"].copy()
    subset_idx = np.random.choice(adata.var_names, dim0_size, replace=False)

    subset = adata[:, subset_idx]
    assert subset.is_view
    subset.varm = dict(o=np.ones((dim0_size, dim1_size)))
    assert not subset.is_view
    assert np.all(orig_varm_val == adata.varm["o"])  # Checking for mutation
    assert np.all(subset.varm["o"] == np.ones((dim0_size, dim1_size)))

    subset = adata[:, subset_idx]
    subset_hash = joblib.hash(subset)
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.varm = dict(o=np.ones((dim0_size + 1, dim1_size)))
    with pytest.raises(ValueError, match=r"incorrect shape"):
        subset.varm = dict(o=np.ones((dim0_size - 1, dim1_size)))
    # subset should not be changed by failed setting
    assert subset_hash == joblib.hash(subset)
    assert init_hash == joblib.hash(adata)


# TODO: Determine if this is the intended behavior,
#       or just the behaviour we’ve had for a while
@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_not_set_subset_X(matrix_type_base, subset_func):
    adata = ad.AnnData(matrix_type_base(asarray(sparse.random(20, 20))))
    init_hash = joblib.hash(adata)
    orig_X_val = adata.X.copy()
    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.X.shape[1])), subset.var_names
    )
    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*X.*"):
        subset.X[:, internal_idx] = 1
    assert not subset.is_view
    assert not np.any(asarray(adata.X != orig_X_val))

    assert init_hash == joblib.hash(adata)
    assert isinstance(subset.X, type(adata.X))


# TODO: Determine if this is the intended behavior,
#       or just the behaviour we’ve had for a while
@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_not_set_subset_X_dask(matrix_type_no_gpu, subset_func):
    adata = ad.AnnData(matrix_type_no_gpu(asarray(sparse.random(20, 20))))
    init_hash = tokenize(adata)
    orig_X_val = adata.X.copy()
    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.X.shape[1])), subset.var_names
    )
    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*X.*"):
        subset.X[:, internal_idx] = 1
    assert not subset.is_view
    assert not np.any(asarray(adata.X != orig_X_val))

    assert init_hash == tokenize(adata)
    assert isinstance(subset.X, type(adata.X))


@IGNORE_SPARSE_EFFICIENCY_WARNING
def test_set_scalar_subset_X(matrix_type, subset_func):
    adata = ad.AnnData(matrix_type(np.zeros((10, 10))))
    orig_X_val = adata.X.copy()
    subset_idx = subset_func(adata.obs_names)

    adata_subset = adata[subset_idx, :]

    adata_subset.X = 1

    assert adata_subset.is_view
    assert np.all(asarray(adata[subset_idx, :].X) == 1)
    if isinstance(adata.X, CupyCSCMatrix):
        # Comparison broken for CSC matrices
        # https://github.com/cupy/cupy/issues/7757
        assert asarray(orig_X_val.tocsr() != adata.X.tocsr()).sum() == mul(
            *adata_subset.shape
        )
    else:
        assert asarray(orig_X_val != adata.X).sum() == mul(*adata_subset.shape)


# TODO: Use different kind of subsetting for adata and view
def test_set_subset_obsm(adata, subset_func):
    init_hash = joblib.hash(adata)
    orig_obsm_val = adata.obsm["o"].copy()

    while True:
        subset_idx = slice_subset(adata.obs_names)
        if len(adata[subset_idx, :]) > 2:
            break
    subset = adata[subset_idx, :]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.obsm["o"].shape[0])), subset.obs_names
    )

    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*obsm.*"):
        subset.obsm["o"][internal_idx] = 1
    assert not subset.is_view
    assert np.all(adata.obsm["o"] == orig_obsm_val)

    assert init_hash == joblib.hash(adata)


def test_set_subset_varm(adata, subset_func):
    init_hash = joblib.hash(adata)
    orig_varm_val = adata.varm["o"].copy()

    while True:
        subset_idx = slice_subset(adata.var_names)
        if (adata[:, subset_idx]).shape[1] > 2:
            break
    subset = adata[:, subset_idx]

    internal_idx = _normalize_index(
        subset_func(np.arange(subset.varm["o"].shape[0])), subset.var_names
    )

    assert subset.is_view
    with pytest.warns(ad.ImplicitModificationWarning, match=r".*varm.*"):
        subset.varm["o"][internal_idx] = 1
    assert not subset.is_view
    assert np.all(adata.varm["o"] == orig_varm_val)

    assert init_hash == joblib.hash(adata)


@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_failed_delitem(attr):
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    view = adata[5:7, :][:, :5]
    adata_hash = joblib.hash(adata)
    view_hash = joblib.hash(view)

    with pytest.raises(KeyError):
        getattr(view, attr).__delitem__("not a key")

    assert view.is_view
    assert adata_hash == joblib.hash(adata)
    assert view_hash == joblib.hash(view)


@pytest.mark.parametrize("attr", ["obsm", "varm", "obsp", "varp", "layers"])
def test_view_delitem(attr):
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    getattr(adata, attr)["to_delete"] = np.ones((10, 10))
    # Shouldn’t be a subclass, should be an ndarray
    assert type(getattr(adata, attr)["to_delete"]) is np.ndarray
    view = adata[5:7, :][:, :5]
    adata_hash = joblib.hash(adata)
    view_hash = joblib.hash(view)

    with pytest.warns(
        ad.ImplicitModificationWarning, match=rf".*\.{attr}\['to_delete'\].*"
    ):
        getattr(view, attr).__delitem__("to_delete")

    assert not view.is_view
    assert "to_delete" not in getattr(view, attr)
    assert "to_delete" in getattr(adata, attr)
    assert adata_hash == joblib.hash(adata)
    assert view_hash != joblib.hash(view)


@pytest.mark.parametrize(
    "attr", ["X", "obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_delattr(attr, subset_func):
    base = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    orig_hash = tokenize(base)
    subset = base[subset_func(base.obs_names), subset_func(base.var_names)]
    empty = ad.AnnData(obs=subset.obs[[]], var=subset.var[[]])

    delattr(subset, attr)

    assert not subset.is_view
    # Should now have same value as default
    assert_equal(getattr(subset, attr), getattr(empty, attr))
    assert orig_hash == tokenize(base)  # Original should not be modified


@pytest.mark.parametrize(
    "attr", ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "uns"]
)
def test_view_setattr_machinery(attr, subset_func, subset_func2):
    # Tests that setting attributes on a view doesn't mess anything up too bad
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    view = adata[subset_func(adata.obs_names), subset_func2(adata.var_names)]

    actual = view.copy()
    setattr(view, attr, getattr(actual, attr))
    assert_equal(actual, view, exact=True)


def test_layers_view():
    X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    L = np.array([[10, 11, 12], [13, 14, 15], [16, 17, 18]])
    real_adata = ad.AnnData(X)
    real_adata.layers["L"] = L
    view_adata = real_adata[1:, 1:]
    real_hash = joblib.hash(real_adata)
    view_hash = joblib.hash(view_adata)

    assert view_adata.is_view

    with pytest.raises(ValueError, match=r"incorrect shape"):
        view_adata.layers["L2"] = L + 2

    assert view_adata.is_view  # Failing to set layer item makes adata not view
    assert real_hash == joblib.hash(real_adata)
    assert view_hash == joblib.hash(view_adata)

    with pytest.warns(ad.ImplicitModificationWarning, match=r".*layers.*"):
        view_adata.layers["L2"] = L[1:, 1:] + 2

    assert not view_adata.is_view
    assert real_hash == joblib.hash(real_adata)
    assert view_hash != joblib.hash(view_adata)


# TODO: This can be flaky. Make that stop
def test_view_of_view(matrix_type, subset_func, subset_func2):
    adata = gen_adata((30, 15), X_type=matrix_type)
    adata.raw = adata.copy()
    if subset_func is single_subset:
        pytest.xfail("Other subset generating functions have trouble with this")
    var_s1 = subset_func(adata.var_names, min_size=4)
    var_view1 = adata[:, var_s1]
    adata[:, var_s1].X
    var_s2 = subset_func2(var_view1.var_names)
    var_view2 = var_view1[:, var_s2]
    assert var_view2._adata_ref is adata
    assert isinstance(var_view2.X, type(adata.X))
    obs_s1 = subset_func(adata.obs_names, min_size=4)
    obs_view1 = adata[obs_s1, :]
    obs_s2 = subset_func2(obs_view1.obs_names)
    assert adata[obs_s1, :][:, var_s1][obs_s2, :]._adata_ref is adata
    assert isinstance(obs_view1.X, type(adata.X))

    view_of_actual_copy = adata[:, var_s1].copy()[obs_s1, :].copy()[:, var_s2].copy()

    view_of_view_copy = adata[:, var_s1][obs_s1, :][:, var_s2].copy()

    assert_equal(view_of_actual_copy, view_of_view_copy, exact=True)
    assert isinstance(view_of_actual_copy.X, type(adata.X))
    assert isinstance(view_of_view_copy.X, type(adata.X))


def test_view_of_view_modification():
    adata = ad.AnnData(np.zeros((10, 10)))
    adata[0, :][:, 5:].X = np.ones(5)
    assert np.all(adata.X[0, 5:] == np.ones(5))
    adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2))
    assert np.all(adata.X[1:3, 1:3] == np.ones((2, 2)))

    adata.X = sparse.csr_matrix(adata.X)
    adata[0, :][:, 5:].X = np.ones(5) * 2
    assert np.all(asarray(adata.X)[0, 5:] == np.ones(5) * 2)
    adata[[1, 2], :][:, [1, 2]].X = np.ones((2, 2)) * 2
    assert np.all(asarray(adata.X)[1:3, 1:3] == np.ones((2, 2)) * 2)


def test_double_index(subset_func, subset_func2):
    adata = gen_adata((10, 10), **GEN_ADATA_DASK_ARGS)
    obs_subset = subset_func(adata.obs_names)
    var_subset = subset_func2(adata.var_names)
    v1 = adata[obs_subset, var_subset]
    v2 = adata[obs_subset, :][:, var_subset]

    assert np.all(asarray(v1.X) == asarray(v2.X))
    assert np.all(v1.obs == v2.obs)
    assert np.all(v1.var == v2.var)


def test_view_different_type_indices(matrix_type):
    orig = gen_adata((30, 30), X_type=matrix_type)
    boolean_array_mask = np.random.randint(0, 2, 30).astype("bool")
    boolean_list_mask = boolean_array_mask.tolist()
    integer_array_mask = np.where(boolean_array_mask)[0]
    integer_list_mask = integer_array_mask.tolist()

    assert_equal(orig[integer_array_mask, :], orig[boolean_array_mask, :])
    assert_equal(orig[integer_list_mask, :], orig[boolean_list_mask, :])
    assert_equal(orig[integer_list_mask, :], orig[integer_array_mask, :])
    assert_equal(orig[:, integer_array_mask], orig[:, boolean_array_mask])
    assert_equal(orig[:, integer_list_mask], orig[:, boolean_list_mask])
    assert_equal(orig[:, integer_list_mask], orig[:, integer_array_mask])
    # check that X element is same independent of access
    assert_equal(orig[:, integer_list_mask].X, orig.X[:, integer_list_mask])
    assert_equal(orig[:, boolean_list_mask].X, orig.X[:, boolean_list_mask])
    assert_equal(orig[:, integer_array_mask].X, orig.X[:, integer_array_mask])
    assert_equal(orig[:, integer_list_mask].X, orig.X[:, integer_list_mask])
    assert_equal(orig[integer_list_mask, :].X, orig.X[integer_list_mask, :])
    assert_equal(orig[boolean_list_mask, :].X, orig.X[boolean_list_mask, :])
    assert_equal(orig[integer_array_mask, :].X, orig.X[integer_array_mask, :])
    assert_equal(orig[integer_list_mask, :].X, orig.X[integer_list_mask, :])


def test_view_retains_ndarray_subclass():
    adata = ad.AnnData(np.zeros((10, 10)))
    adata.obsm["foo"] = np.zeros((10, 5)).view(NDArraySubclass)

    view = adata[:5, :]

    assert isinstance(view.obsm["foo"], NDArraySubclass)
    assert view.obsm["foo"].shape == (5, 5)


def test_modify_uns_in_copy():
    # https://github.com/scverse/anndata/issues/571
    adata = ad.AnnData(np.ones((5, 5)), uns={"parent": {"key": "value"}})
    adata_copy = adata[:3].copy()
    adata_copy.uns["parent"]["key"] = "new_value"
    assert adata.uns["parent"]["key"] != adata_copy.uns["parent"]["key"]


@pytest.mark.parametrize("index", [-101, 100, (slice(None), -101), (slice(None), 100)])
def test_invalid_scalar_index(adata, index):
    # https://github.com/scverse/anndata/issues/619
    with pytest.raises(IndexError, match=r".*index.* out of range\."):
        _ = adata[index]


@pytest.mark.parametrize("obs", [False, True])
@pytest.mark.parametrize("index", [-100, -50, -1])
def test_negative_scalar_index(*, adata, index: int, obs: bool):
    pos_index = index + (adata.n_obs if obs else adata.n_vars)

    if obs:
        adata_pos_subset = adata[pos_index]
        adata_neg_subset = adata[index]
    else:
        adata_pos_subset = adata[:, pos_index]
        adata_neg_subset = adata[:, index]

    np.testing.assert_array_equal(
        adata_pos_subset.obs_names, adata_neg_subset.obs_names
    )
    np.testing.assert_array_equal(
        adata_pos_subset.var_names, adata_neg_subset.var_names
    )


def test_viewness_propagation_nan():
    """Regression test for https://github.com/scverse/anndata/issues/239"""
    adata = ad.AnnData(np.random.random((10, 10)))
    adata = adata[:, [0, 2, 4]]
    v = adata.X.var(axis=0)
    assert not isinstance(v, ArrayView), type(v).mro()
    # this used to break
    v[np.isnan(v)] = 0


def test_viewness_propagation_allclose(adata):
    """Regression test for https://github.com/scverse/anndata/issues/191"""
    adata.varm["o"][4:10] = np.tile(np.nan, (10 - 4, adata.varm["o"].shape[1]))
    a = adata[:50].copy()
    b = adata[:50]

    # .copy() turns view to ndarray, so this was fine:
    assert np.allclose(a.varm["o"], b.varm["o"].copy(), equal_nan=True)
    # Next line triggered the mutation:
    assert np.allclose(a.varm["o"], b.varm["o"], equal_nan=True)
    # Showing that the mutation didn’t happen:
    assert np.allclose(a.varm["o"], b.varm["o"].copy(), equal_nan=True)


spmat = [sparse.csr_matrix, sparse.csc_matrix, sparse.csr_array, sparse.csc_array]


@pytest.mark.parametrize("spmat", spmat)
def test_deepcopy_subset(adata, spmat: type):
    adata.obsp["arr"] = np.zeros((adata.n_obs, adata.n_obs))
    adata.obsp["spmat"] = spmat((adata.n_obs, adata.n_obs))

    adata = deepcopy(adata[:10].copy())

    assert isinstance(adata.obsp["arr"], np.ndarray)
    assert not isinstance(adata.obsp["arr"], ArrayView)
    np.testing.assert_array_equal(adata.obsp["arr"].shape, (10, 10))

    assert isinstance(adata.obsp["spmat"], spmat)
    view_type = (
        SparseCSRMatrixView if spmat is sparse.csr_matrix else SparseCSCMatrixView
    )
    view_type = SparseCSRArrayView if spmat is sparse.csr_array else SparseCSCArrayView
    assert not isinstance(
        adata.obsp["spmat"],
        view_type,
    )
    np.testing.assert_array_equal(adata.obsp["spmat"].shape, (10, 10))


array_type = [
    asarray,
    sparse.csr_matrix,
    sparse.csc_matrix,
    sparse.csr_array,
    sparse.csc_array,
]


# https://github.com/scverse/anndata/issues/680
@pytest.mark.parametrize("array_type", array_type)
@pytest.mark.parametrize("attr", ["X", "layers", "obsm", "varm", "obsp", "varp"])
def test_view_mixin_copies_data(adata, array_type: type, attr):
    N = 100
    adata = ad.AnnData(
        obs=pd.DataFrame(index=np.arange(N).astype(str)),
        var=pd.DataFrame(index=np.arange(N).astype(str)),
    )

    X = array_type(sparse.eye(N, N).multiply(np.arange(1, N + 1)))
    if attr == "X":
        adata.X = X
    else:
        getattr(adata, attr)["arr"] = X

    view = adata[:50]

    if attr == "X":
        arr_view = view.X
    else:
        arr_view = getattr(view, attr)["arr"]

    arr_view_copy = arr_view.copy()

    if sparse.issparse(X):
        assert not np.shares_memory(arr_view.indices, arr_view_copy.indices)
        assert not np.shares_memory(arr_view.indptr, arr_view_copy.indptr)
        assert not np.shares_memory(arr_view.data, arr_view_copy.data)

        arr_view_copy.data[0] = -5
        assert not np.array_equal(arr_view_copy.data, arr_view.data)
    else:
        assert not np.shares_memory(arr_view, arr_view_copy)

        arr_view_copy[0, 0] = -5
        assert not np.array_equal(arr_view_copy, arr_view)


def test_copy_X_dtype():
    adata = ad.AnnData(sparse.eye(50, dtype=np.float64, format="csr"))
    adata_c = adata[::2].copy()
    assert adata_c.X.dtype == adata.X.dtype


def test_x_none():
    orig = ad.AnnData(obs=pd.DataFrame(index=np.arange(50)))
    assert orig.shape == (50, 0)
    view = orig[2:4]
    assert view.shape == (2, 0)
    assert view.obs_names.tolist() == ["2", "3"]
    new = view.copy()
    assert new.shape == (2, 0)
    assert new.obs_names.tolist() == ["2", "3"]


def test_empty_list_subset():
    orig = gen_adata((10, 10))
    subset = orig[:, []]
    assert subset.X.shape == (10, 0)
    assert subset.obsm["sparse"].shape == (10, 100)
    assert subset.varm["sparse"].shape == (0, 100)


def test_dataframe_view_index_setting():
    a1 = ad.AnnData(
        X=np.array([[1, 2, 3], [4, 5, 6]]),
        obs={"obs_names": ["aa", "bb"], "property": [True, True]},
        var={"var_names": ["c", "d", "e"]},
    )
    a2 = a1[:, ["c", "d"]]
    with pytest.warns(
        ad.ImplicitModificationWarning, match=r"Trying to modify index.*"
    ):
        a2.obs.index = a2.obs.index.map(lambda x: x[-1])
    assert not isinstance(a2.obs, ad._core.views.DataFrameView)
    assert isinstance(a2.obs, pd.DataFrame)
    assert a1.obs.index.values.tolist() == ["aa", "bb"]
    assert a2.obs.index.values.tolist() == ["a", "b"]


def test_ellipsis_index(
    ellipsis_index: tuple[EllipsisType | slice, ...] | EllipsisType,
    equivalent_ellipsis_index: tuple[slice, slice],
    matrix_type,
):
    adata = gen_adata((10, 10), X_type=matrix_type, **GEN_ADATA_DASK_ARGS)
    subset_ellipsis = adata[ellipsis_index]
    subset = adata[equivalent_ellipsis_index]
    assert_equal(subset_ellipsis, subset)


@pytest.mark.parametrize(
    ("index", "expected_error"),
    [
        ((..., 0, ...), r"only have a single ellipsis"),
        ((0, 0, 0), r"Received a length 3 index"),
    ],
    ids=["ellipsis-int-ellipsis", "int-int-int"],
)
def test_index_3d_errors(index: tuple[int | EllipsisType, ...], expected_error: str):
    with pytest.raises(IndexError, match=expected_error):
        gen_adata((10, 10))[index]


@pytest.mark.parametrize(
    "index",
    [
        pytest.param(sparse.csr_matrix(np.random.random((1, 10))), id="sparse"),
        pytest.param([1.2, 3.4], id="list"),
        *(
            pytest.param(np.array([1.2, 2.3], dtype=dtype), id=f"ndarray-{dtype}")
            for dtype in [np.float32, np.float64]
        ),
    ],
)
def test_index_float_sequence_raises_error(index):
    with pytest.raises(IndexError, match=r"has floating point values"):
        gen_adata((10, 10))[index]


# @pytest.mark.parametrize("dim", ["obs", "var"])
# @pytest.mark.parametrize(
#     ("idx", "pat"),
#     [
#         pytest.param(
#             [1, "cell_c"], r"Mixed type list indexers not supported", id="mixed"
#         ),
#         pytest.param(
#             [[1, 2], [2]], r"setting an array element with a sequence", id="nested"
#         ),
#     ],
# )
# def test_subset_errors(dim, idx, pat):
#     orig = gen_adata((10, 10))
#     with pytest.raises(ValueError, match=pat):
#         if dim == "obs":
#             orig[idx, :].X
#         elif dim == "var":
#             orig[:, idx].X
