"""This module provides I/O functions for the MAGRES file format, introduced
by CASTEP as an output format to store structural data and ab-initio
calculated NMR parameters.
Authors: Simone Sturniolo (ase implementation), Tim Green (original magres
    parser code)
"""

import re
import numpy as np
from collections import OrderedDict

import ase.units
from ase.atoms import Atoms
from ase.spacegroup import Spacegroup


def read_magres(filename, include_unrecognised=False):
    """
        Reader function for magres files.
    """

    blocks_re = re.compile(r'[\[<](?P<block_name>.*?)[>\]](.*?)[<\[]/' +
                           '(?P=block_name)[\]>]', re.M | re.S)

    """
    Here are defined the various functions required to parse
    different blocks.
    """

    def tensor33(x):
        return np.squeeze(np.reshape(x, (3, 3))).tolist()

    def tensor31(x):
        return np.squeeze(np.reshape(x, (3, 1))).tolist()

    def get_version(file_contents):
        """
            Look for and parse the magres file format version line
        """

        lines = file_contents.split('\n')
        match = re.match('\#\$magres-abinitio-v([0-9]+).([0-9]+)', lines[0])

        if match:
            version = match.groups()
            version = tuple(vnum for vnum in version)
        else:
            version = None

        return version

    def parse_blocks(file_contents):
        """
            Parse series of XML-like deliminated blocks into a list of
            (block_name, contents) tuples
        """

        blocks = blocks_re.findall(file_contents)

        return blocks

    def parse_block(block):
        """
            Parse block contents into a series of (tag, data) records
        """

        def clean_line(line):
            # Remove comments and whitespace at start and ends of line
            line = re.sub('#(.*?)\n', '', line)
            line = line.strip()

            return line

        name, data = block

        lines = [clean_line(line) for line in data.split('\n')]

        records = []

        for line in lines:
            xs = line.split()

            if len(xs) > 0:
                tag = xs[0]
                data = xs[1:]

                records.append((tag, data))

        return (name, records)

    def check_units(d):
        """
            Verify that given units for a particular tag are correct.
        """

        allowed_units = {'lattice': 'Angstrom',
                         'atom': 'Angstrom',
                         'ms': 'ppm',
                         'efg': 'au',
                         'efg_local': 'au',
                         'efg_nonlocal': 'au',
                         'isc': '10^19.T^2.J^-1',
                         'isc_fc': '10^19.T^2.J^-1',
                         'isc_orbital_p': '10^19.T^2.J^-1',
                         'isc_orbital_d': '10^19.T^2.J^-1',
                         'isc_spin': '10^19.T^2.J^-1',
                         'isc': '10^19.T^2.J^-1',
                         'sus': '10^-6.cm^3.mol^-1',
                         'calc_cutoffenergy': 'Hartree', }

        if d[0] in d and d[1] == allowed_units[d[0]]:
            pass
        else:
            raise RuntimeError('Unrecognized units: %s %s' % (d[0], d[1]))

        return d

    def parse_magres_block(block):
        """
            Parse magres block into data dictionary given list of record
            tuples.
        """

        name, records = block

        # Atom label, atom index and 3x3 tensor
        def sitensor33(name):
            return lambda d: {'atom': {'label': data[0],
                                       'index': int(data[1])},
                              name: tensor33([float(x) for x in data[2:]])}

        # 2x(Atom label, atom index) and 3x3 tensor
        def sisitensor33(name):
            return lambda d: {'atom1': {'label': data[0],
                                        'index': int(data[1])},
                              'atom2': {'label': data[2],
                                        'index': int(data[3])},
                              name: tensor33([float(x) for x in data[4:]])}

        tags = {'ms': sitensor33('sigma'),
                'efg': sitensor33('V'),
                'efg_local': sitensor33('V'),
                'efg_nonlocal': sitensor33('V'),
                'isc': sisitensor33('K'),
                'isc_fc': sisitensor33('K'),
                'isc_spin': sisitensor33('K'),
                'isc_orbital_p': sisitensor33('K'),
                'isc_orbital_d': sisitensor33('K'),
                'units': check_units}

        data_dict = {}

        for record in records:
            tag, data = record

            if tag not in data_dict:
                data_dict[tag] = []

            data_dict[tag].append(tags[tag](data))

        return data_dict

    def parse_atoms_block(block):
        """
            Parse atoms block into data dictionary given list of record tuples.
        """

        name, records = block

        # Lattice record: a1, a2 a3, b1, b2, b3, c1, c2 c3
        def lattice(d):
            return tensor33([float(x) for x in data])

        # Atom record: label, index, x, y, z
        def atom(d):
            return {'species': data[0],
                    'label': data[1],
                    'index': int(data[2]),
                    'position': tensor31([float(x) for x in data[3:]])}

        def symmetry(d):
            return ' '.join(data)

        tags = {'lattice': lattice,
                'atom': atom,
                'units': check_units,
                'symmetry': symmetry}

        data_dict = {}

        for record in records:
            tag, data = record
            if tag not in data_dict:
                data_dict[tag] = []
            data_dict[tag].append(tags[tag](data))

        return data_dict

    def parse_generic_block(block):
        """
            Parse any other block into data dictionary given list of record
            tuples.
        """

        name, records = block

        data_dict = {}

        for record in records:
            tag, data = record

            if tag not in data_dict:
                data_dict[tag] = []

            data_dict[tag].append(data)

        return data_dict

    """
        Actual parser code.
    """

    block_parsers = {'magres': parse_magres_block,
                     'atoms': parse_atoms_block,
                     'calculation': parse_generic_block, }

    file_contents = open(filename).read()

    # This works as a validity check
    version = get_version(file_contents)
    if version is None:
        # This isn't even a .magres file!
        raise RuntimeError('File is not in standard Magres format')
    blocks = parse_blocks(file_contents)

    data_dict = {}

    for block_data in blocks:
        block = parse_block(block_data)

        if block[0] in block_parsers:
            block_dict = block_parsers[block[0]](block)
            data_dict[block[0]] = block_dict
        else:
            # Throw in the text content of blocks we don't recognise
            if include_unrecognised:
                data_dict[block[0]] = block_data[1]

    # Now the loaded data must be turned into an ASE Atoms object

    # First check if the file is even viable
    if 'atoms' not in data_dict:
        raise RuntimeError('Magres file does not contain structure data')

    # Allowed units handling. This is redundant for now but
    # could turn out useful in the future

    magres_units = {'Angstrom': ase.units.Ang}

    # Lattice parameters?
    if 'lattice' in data_dict['atoms']:
        try:
            u = dict(data_dict['atoms']['units'])['lattice']
        except KeyError:
            raise RuntimeError('No units detected in file for lattice')
        u = magres_units[u]
        cell = np.array(data_dict['atoms']['lattice'][0]) * u
        pbc = True
    else:
        cell = None
        pbc = False

    # Now the atoms
    symbols = []
    positions = []
    indices = []
    labels = []

    if 'atom' in data_dict['atoms']:
        try:
            u = dict(data_dict['atoms']['units'])['atom']
        except KeyError:
            raise RuntimeError('No units detected in file for atom positions')
        u = magres_units[u]
        for a in data_dict['atoms']['atom']:
            symbols.append(a['species'])
            positions.append(a['position'])
            indices.append(a['index'])
            labels.append(a['label'])

    atoms = Atoms(cell=cell,
                  pbc=pbc,
                  symbols=symbols,
                  positions=positions)

    # Add the spacegroup, if present and recognizable
    if 'symmetry' in data_dict['atoms']:
        try:
            spg = Spacegroup(data_dict['atoms']['symmetry'][0])
        except:
            # Not found
            spg = Spacegroup(1)  # Most generic one
        atoms.info['spacegroup'] = spg

    # Set up the rest of the properties as arrays
    atoms.new_array('indices', np.array(indices))
    atoms.new_array('labels', np.array(labels))

    # Now for the magres specific stuff
    li_list = zip(labels, indices)
    mprops = {
        'ms': ('sigma', False),
        'efg': ('V', False),
        'isc': ('K', True)}
    # (matrix name, is pair interaction) for various magres quantities

    def create_magres_array(u, block):

        # This bit to keep track of tags
        u0 = u.split('_')[0]
        if u0 not in mprops:
            raise RuntimeError('Invalid data in magres block')

        mn = mprops[u0][0]
        is_pair = mprops[u0][1]

        if not is_pair:
            u_arr = [None] * len(li_list)
        else:
            u_arr = [[None] * (i + 1) for i in range(len(li_list))]

        for s in block:
            # Find the atom index/indices
            if not is_pair:
                # First find out which atom this is
                at = (s['atom']['label'], s['atom']['index'])
                try:
                    ai = li_list.index(at)
                except ValueError:
                    raise RuntimeError('Invalid data in magres block')
                # Then add the relevant quantity
                u_arr[ai] = s[mn]
            else:
                at1 = (s['atom1']['label'], s['atom1']['index'])
                at2 = (s['atom2']['label'], s['atom2']['index'])
                ai1 = li_list.index(at1)
                ai2 = li_list.index(at2)
                # Sort them
                ai1, ai2 = sorted((ai1, ai2), reverse=True)
                u_arr[ai1][ai2] = s[mn]

        return np.array(u_arr)

    if 'magres' in data_dict:
        if 'units' in data_dict['magres']:
            atoms.info['magres_units'] = dict(data_dict['magres']['units'])
            for u in atoms.info['magres_units']:
                u_arr = create_magres_array(u, data_dict['magres'][u])
                atoms.new_array(u, u_arr)

    if 'calculation' in data_dict:
        atoms.info['magresblock_calculation'] = data_dict['calculation']

    if include_unrecognised:
        for b in data_dict:
            if b not in block_parsers:
                atoms.info['magresblock_' + b] = data_dict[b]

    return atoms


def tensor_string(tensor):
    return ' '.join(' '.join(str(x) for x in xs) for xs in tensor)


def write_magres(filename, image):
    """
    A writing function for magres files. Two steps: first data are arranged
    into structures, then dumped to the actual file
    """

    image_data = {}
    image_data['atoms'] = {'units': []}
    # Contains units, lattice and each individual atom
    if np.all(image.get_pbc()):
            # Has lattice!
        image_data['atoms']['units'].append(['lattice', 'Angstrom'])
        image_data['atoms']['lattice'] = [image.get_cell()]

    # Now for the atoms
    if image.has('labels'):
        labels = image.get_array('labels')
    else:
        labels = image.get_chemical_symbols()

    if image.has('indices'):
        indices = image.get_array('indices')
    else:
        indices = [labels[:i + 1].count(labels[i]) for i in range(len(labels))]

    # Iterate over atoms
    atom_info = list(zip(image.get_chemical_symbols(),
                         image.get_positions()))
    if len(atom_info) > 0:
        image_data['atoms']['units'].append(['atom', 'Angstrom'])
        image_data['atoms']['atom'] = []

    for i, a in enumerate(atom_info):
        image_data['atoms']['atom'].append({
            'index': indices[i],
            'position': a[1],
            'species': a[0],
            'label': labels[i]})

    # Spacegroup, if present
    if 'spacegroup' in image.info:
        image_data['atoms']['symmetry'] = [image.info['spacegroup']
                                           .symbol.replace(' ', '')]

    # Now go on to do the same for magres information
    if 'magres_units' in image.info:

        image_data['magres'] = {'units': []}
        mprops = {
            'ms': ('sigma', False),
            'efg': ('V', False),
            'isc': ('K', True)}
        
        for u in image.info['magres_units']:
            # Get the type
            p = u.split('_')[0]
            if p in mprops:
                image_data['magres']['units'].append(
                    [u, image.info['magres_units'][u]])
                image_data['magres'][u] = []
                prop = mprops[p]
                arr = image.get_array(u)
                li_tab = zip(labels, indices)
                for i, (lab, ind) in enumerate(li_tab):
                    if prop[1]:
                        for j, (lab2, ind2) in enumerate(li_tab[:i + 1]):
                            if arr[i][j] is not None:
                                tens = {prop[0]: arr[i][j],
                                        'atom1': {'label': lab,
                                                  'index': ind},
                                        'atom2': {'label': lab2,
                                                  'index': ind2}}
                                image_data['magres'][u].append(tens)
                    else:
                        if arr[i] is not None:
                            tens = {prop[0]: arr[i],
                                    'atom': {'label': lab,
                                             'index': ind}}
                            image_data['magres'][u].append(tens)

    # Calculation block, if present
    if 'magresblock_calculation' in image.info:
        image_data['calculation'] = image.info['magresblock_calculation']

    def write_units(data, out):
        if 'units' in data:
            for tag, units in data['units']:
                out.append('  units %s %s' % (tag, units))

    def write_magres_block(data):
        """
            Write out a <magres> block from its dictionary representation
        """

        out = []

        def siout(tag, tensor_name):
            if tag in data:
                for atom_si in data[tag]:
                    out.append(('  %s %s %d '
                                '%s') % (tag,
                                         atom_si['atom']['label'],
                                         atom_si['atom']['index'],
                                         tensor_string(atom_si[tensor_name])))

        write_units(data, out)

        siout('ms', 'sigma')

        siout('efg_local', 'V')
        siout('efg_nonlocal', 'V')
        siout('efg', 'V')

        def sisiout(tag, tensor_name):
            if tag in data:
                for isc in data[tag]:
                    out.append(('  %s %s %d %s %d '
                                '%s') % (tag,
                                         isc['atom1']['label'],
                                         isc['atom1']['index'],
                                         isc['atom2']['label'],
                                         isc['atom2']['index'],
                                         tensor_string(isc[tensor_name])))

        sisiout('isc_fc', 'K')
        sisiout('isc_orbital_p', 'K')
        sisiout('isc_orbital_d', 'K')
        sisiout('isc_spin', 'K')
        sisiout('isc', 'K')

        return '\n'.join(out)

    def write_atoms_block(data):
        out = []

        write_units(data, out)

        if 'lattice' in data:
            for lat in data['lattice']:
                out.append("  lattice %s" % tensor_string(lat))

        if 'symmetry' in data:
            for sym in data['symmetry']:
                out.append('  symmetry %s' % sym)

        if 'atom' in data:
            for a in data['atom']:
                out.append(('  atom %s %s %s '
                            '%s') % (a['species'],
                                     a['label'],
                                     a['index'],
                                     ' '.join(str(x) for x in a['position'])))

        return '\n'.join(out)

    def write_generic_block(data):
        out = []

        for tag, data in data.items():
            for value in data:
                out.append('%s %s' % (tag, ' '.join(str(x) for x in value)))

        return '\n'.join(out)

    # Using this to preserve order
    block_writers = OrderedDict([('calculation', write_generic_block),
                                 ('atoms', write_atoms_block),
                                 ('magres', write_magres_block)])

    # Opening the file
    ofile = open(filename, 'w')

    # First, write the header
    ofile.write('#$magres-abinitio-v1.0\n')
    ofile.write('# Generated by the Atomic Simulation Environment library\n')

    for b in block_writers:
        if b in image_data:
            ofile.write('[{0}]\n'.format(b))
            ofile.write(block_writers[b](image_data[b]))
            ofile.write('\n[/{0}]\n'.format(b))

    # Now on to check for any non-standard blocks...
    for i in image.info:
        if '_' in i:
            ismag, b = i.split('_', 1)
            if ismag == 'magresblock' and b not in block_writers:
                ofile.write('[{0}]\n'.format(b))
                ofile.write(image.info[i])
                ofile.write('[/{0}]\n'.format(b))
