# flake8: noqa
"""
The ASE Calculator for OpenMX <http://www.openmx-square.org>: Python interface
to the software package for nano-scale material simulations based on density
functional theories.
    Copyright (C) 2018 JaeHwan Shim and JaeJun Yu

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation, either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with ASE.  If not, see <http://www.gnu.org/licenses/>.
"""
#  from ase.calculators import SinglePointDFTCalculator
import os
import struct
import numpy as np
from ase.units import Ha, Bohr, Debye


def read_openmx(filename=None, debug=False):
    from ase.calculators.openmx import OpenMX
    from ase import Atoms
    """
    Read results from typical OpenMX output files and returns the atom object
    In default mode, it reads every implementd properties we could get from
    the files. Unlike previous version, we read the information based on file.
    previous results will be eraised unless previous results are written in the
    next calculation results.

    Read the 'LABEL.log' file seems redundant. Because all the
    information should already be written in '.out' file. However, in the
    version 3.8.3, stress tensor are not written in the '.out' file. It only
    contained in the '.log' file. So... I implented reading '.log' file method
    """
    log_data = read_file(get_file_name('.log', filename), debug=debug)
    restart_data = read_file(get_file_name('.dat#', filename), debug=debug)
    dat_data = read_file(get_file_name('.dat', filename), debug=debug)
    out_data = read_file(get_file_name('.out', filename), debug=debug)
    scfout_data = read_scfout_file(get_file_name('.scfout', filename))
    band_data = read_band_file(get_file_name('.Band', filename))
    # dos_data = read_dos_file(get_file_name('.Dos.val', filename))
    """
    First, we get every data we could get from the all results files. And then,
    reform the data to fit to data structure of Atom object. While doing this,
    Fix the unit to ASE format.
    """
    parameters = get_parameters(out_data=out_data, log_data=log_data,
                                restart_data=restart_data, dat_data=dat_data,
                                scfout_data=scfout_data, band_data=band_data)
    atomic_formula = get_atomic_formula(out_data=out_data, log_data=log_data,
                                        restart_data=restart_data,
                                        scfout_data=scfout_data,
                                        dat_data=dat_data)
    results = get_results(out_data=out_data, log_data=log_data,
                          restart_data=restart_data, scfout_data=scfout_data,
                          dat_data=dat_data, band_data=band_data)

    atoms = Atoms(**atomic_formula)
    atoms.calc = OpenMX(**parameters)
    atoms.calc.results = results
    return atoms


def read_file(filename, debug=False):
    """
    Read the 'LABEL.out' file. Using 'parameters.py', we read every 'allowed_
    dat' dictionory. while reading a file, if one find the key matcheds That
    'patters', which indicates the property we want is written, it will returns
    the pair value of that key. For example,
            example will be written later
    """
    from ase.calculators.openmx import parameters as param
    if not os.path.isfile(filename):
        return {}
    param_keys = ['integer_keys', 'float_keys', 'string_keys', 'bool_keys',
                  'list_int_keys', 'list_float_keys', 'list_bool_keys',
                  'tuple_integer_keys', 'tuple_float_keys', 'tuple_float_keys']
    patterns = {
      'Stress tensor': ('stress', read_stress_tensor),
      'Dipole moment': ('dipole', read_dipole),
      'Fractional coordinates of': ('scaled_positions', read_scaled_positions),
      'Utot.': ('energy', read_energy),
      'energies in': ('energies', read_energies),
      'Chemical Potential': ('chemical_potential', read_chemical_potential),
      '<coordinates.forces': ('forces', read_forces),
      'Eigenvalues': ('eigenvalues', read_eigenvalues)}
    special_patterns = {
      'Total spin moment': (('magmoms', 'total_magmom'),
                            read_magmoms_and_total_magmom),
                        }
    out_data = {}
    line = '\n'
    if(debug):
        print('Read results from %s' % filename)
    with open(filename, 'r') as f:
        '''
         Read output file line by line. When the `line` matches the pattern
        of certain keywords in `param.[dtype]_keys`, for example,

        if line in param.string_keys:
            out_data[key] = read_string(line)

        parse that line and store it to `out_data` in specified data type.
         To cover all `dtype` parameters, for loop was used,

        for [dtype] in parameters_keys:
            if line in param.[dtype]_keys:
                out_data[key] = read_[dtype](line)

        After found matched pattern, escape the for loop using `continue`.
        '''
        while line != '':
            pattern_matched = False
            line = f.readline()
            try:
                _line = line.split()[0]
            except IndexError:
                continue
            for dtype_key in param_keys:
                dtype = dtype_key.rsplit('_', 1)[0]
                read_dtype = globals()['read_' + dtype]
                for key in param.__dict__[dtype_key]:
                    if key in _line:
                        out_data[get_standard_key(key)] = read_dtype(line)
                        pattern_matched = True
                        continue
                if pattern_matched:
                    continue

            for key in param.matrix_keys:
                if '<'+key in line:
                    out_data[get_standard_key(key)] = read_matrix(line, key, f)
                    pattern_matched = True
                    continue
            if pattern_matched:
                continue
            for key in patterns.keys():
                if key in line:
                    out_data[patterns[key][0]] = patterns[key][1](line, f, debug=debug)
                    pattern_matched = True
                    continue
            if pattern_matched:
                continue
            for key in special_patterns.keys():
                if key in line:
                    a, b = special_patterns[key][1](line, f)
                    out_data[special_patterns[key][0][0]] = a
                    out_data[special_patterns[key][0][1]] = b
                    pattern_matched = True
                    continue
            if pattern_matched:
                continue
    return out_data


def read_scfout_file(filename=None):
    """
    Read the Developer output '.scfout' files. It Behaves like read_scfout.c,
    OpenMX module, but written in python. Note that some array are begin with
    1, not 0

    atomnum: the number of total atoms
    Catomnum: the number of atoms in the central region
    Latomnum: the number of atoms in the left lead
    Ratomnum: the number of atoms in the left lead
    SpinP_switch:
                 0: non-spin polarized
                 1: spin polarized
    TCpyCell: the total number of periodic cells
    Solver: method for solving eigenvalue problem
    ChemP: chemical potential
    Valence_Electrons: total number of valence electrons
    Total_SpinS: total value of Spin (2*Total_SpinS = muB)
    E_Temp: electronic temperature
    Total_NumOrbs: the number of atomic orbitals in each atom
    size: Total_NumOrbs[atomnum+1]
    FNAN: the number of first neighboring atoms of each atom
    size: FNAN[atomnum+1]
    natn: global index of neighboring atoms of an atom ct_AN
    size: natn[atomnum+1][FNAN[ct_AN]+1]
    ncn: global index for cell of neighboring atoms of an atom ct_AN
    size: ncn[atomnum+1][FNAN[ct_AN]+1]
    atv: x,y,and z-components of translation vector of periodically copied cell
    size: atv[TCpyCell+1][4]:
    atv_ijk: i,j,and j number of periodically copied cells
    size: atv_ijk[TCpyCell+1][4]:
    tv[4][4]: unit cell vectors in Bohr
    rtv[4][4]: reciprocal unit cell vectors in Bohr^{-1}
         note:
         tv_i dot rtv_j = 2PI * Kronecker's delta_{ij}
         Gxyz[atomnum+1][60]: atomic coordinates in Bohr
         Hks: Kohn-Sham matrix elements of basis orbitals
    size: Hks[SpinP_switch+1]
             [atomnum+1]
             [FNAN[ct_AN]+1]
             [Total_NumOrbs[ct_AN]]
             [Total_NumOrbs[h_AN]]
    iHks:
         imaginary Kohn-Sham matrix elements of basis orbitals
         for alpha-alpha, beta-beta, and alpha-beta spin matrices
         of which contributions come from spin-orbit coupling
         and Hubbard U effective potential.
    size: iHks[3]
              [atomnum+1]
              [FNAN[ct_AN]+1]
              [Total_NumOrbs[ct_AN]]
              [Total_NumOrbs[h_AN]]
    OLP: overlap matrix
    size: OLP[atomnum+1]
             [FNAN[ct_AN]+1]
             [Total_NumOrbs[ct_AN]]
             [Total_NumOrbs[h_AN]]
    OLPpox: overlap matrix with position operator x
    size: OLPpox[atomnum+1]
                [FNAN[ct_AN]+1]
                [Total_NumOrbs[ct_AN]]
                [Total_NumOrbs[h_AN]]
    OLPpoy: overlap matrix with position operator y
    size: OLPpoy[atomnum+1]
                [FNAN[ct_AN]+1]
                [Total_NumOrbs[ct_AN]]
                [Total_NumOrbs[h_AN]]
    OLPpoz: overlap matrix with position operator z
    size: OLPpoz[atomnum+1]
                [FNAN[ct_AN]+1]
                [Total_NumOrbs[ct_AN]]
                [Total_NumOrbs[h_AN]]
    DM: overlap matrix
    size: DM[SpinP_switch+1]
            [atomnum+1]
            [FNAN[ct_AN]+1]
            [Total_NumOrbs[ct_AN]]
            [Total_NumOrbs[h_AN]]
    dipole_moment_core[4]:
    dipole_moment_background[4]:
    """
    from numpy import insert as ins
    from numpy import cumsum as cum
    from numpy import split as spl
    from numpy import sum, zeros
    if not os.path.isfile(filename):
        return {}

    def easyReader(byte, data_type, shape):
        data_size = {'d': 8, 'i': 4}
        data_struct = {'d': float, 'i': int}
        dt = data_type
        ds = data_size[data_type]
        unpack = struct.unpack
        if len(byte) == ds:
            if dt == 'i':
                return data_struct[dt].from_bytes(byte, byteorder='little')
            elif dt == 'd':
                return np.array(unpack(dt*(len(byte)//ds), byte))[0]
        elif shape is not None:
            return np.array(unpack(dt*(len(byte)//ds), byte)).reshape(shape)
        else:
            return np.array(unpack(dt*(len(byte)//ds), byte))

    def inte(byte, shape=None):
        return easyReader(byte, 'i', shape)

    def floa(byte, shape=None):
        return easyReader(byte, 'd', shape)

    def readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f):
            myOLP = []
            myOLP.append([])
            for ct_AN in range(1, atomnum + 1):
                myOLP.append([])
                TNO1 = Total_NumOrbs[ct_AN]
                for h_AN in range(FNAN[ct_AN] + 1):
                    myOLP[ct_AN].append([])
                    Gh_AN = natn[ct_AN][h_AN]
                    TNO2 = Total_NumOrbs[Gh_AN]
                    for i in range(TNO1):
                        myOLP[ct_AN][h_AN].append(floa(f.read(8*TNO2)))
            return myOLP

    def readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f):
        Hks = []
        for spin in range(SpinP_switch + 1):
            Hks.append([])
            Hks[spin].append([np.zeros(FNAN[0] + 1)])
            for ct_AN in range(1, atomnum + 1):
                Hks[spin].append([])
                TNO1 = Total_NumOrbs[ct_AN]
                for h_AN in range(FNAN[ct_AN] + 1):
                    Hks[spin][ct_AN].append([])
                    Gh_AN = natn[ct_AN][h_AN]
                    TNO2 = Total_NumOrbs[Gh_AN]
                    for i in range(TNO1):
                        Hks[spin][ct_AN][h_AN].append(floa(f.read(8*TNO2)))
        return Hks

    f = open(filename, mode='rb')
    atomnum, SpinP_switch = inte(f.read(8))
    Catomnum, Latomnum, Ratomnum, TCpyCell = inte(f.read(16))
    atv = floa(f.read(8*4*(TCpyCell+1)), shape=(TCpyCell+1, 4))
    atv_ijk = inte(f.read(4*4*(TCpyCell+1)), shape=(TCpyCell+1, 4))
    Total_NumOrbs = np.insert(inte(f.read(4*(atomnum))), 0, 1, axis=0)
    FNAN = np.insert(inte(f.read(4*(atomnum))), 0, 0, axis=0)
    natn = ins(spl(inte(f.read(4*sum(FNAN[1:] + 1))), cum(FNAN[1:] + 1)),
               0, zeros(FNAN[0] + 1), axis=0)[:-1]
    ncn = ins(spl(inte(f.read(4*np.sum(FNAN[1:] + 1))), cum(FNAN[1:] + 1)),
              0, np.zeros(FNAN[0] + 1), axis=0)[:-1]
    tv = ins(floa(f.read(8*3*4), shape=(3, 4)), 0, [0, 0, 0, 0], axis=0)
    rtv = ins(floa(f.read(8*3*4), shape=(3, 4)), 0, [0, 0, 0, 0], axis=0)
    Gxyz = ins(floa(f.read(8*(atomnum)*4), shape=(atomnum, 4)), 0,
               [0., 0., 0., 0.], axis=0)
    Hks = readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f)
    iHks = []
    if SpinP_switch == 3:
        iHks = readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f)
    OLP = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
    OLPpox = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
    OLPpoy = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
    OLPpoz = readOverlap(atomnum, Total_NumOrbs, FNAN, natn, f)
    DM = readHam(SpinP_switch, FNAN, atomnum, Total_NumOrbs, natn, f)
    Solver = inte(f.read(4))
    ChemP, E_Temp = floa(f.read(8*2))
    dipole_moment_core = floa(f.read(8*3))
    dipole_moment_background = floa(f.read(8*3))
    Valence_Electrons, Total_SpinS = floa(f.read(8*2))

    f.close()
    scf_out = {'atomnum': atomnum, 'SpinP_switch': SpinP_switch,
               'Catomnum': Catomnum, 'Latomnum': Latomnum, 'Hks': Hks,
               'Ratomnum': Ratomnum, 'TCpyCell': TCpyCell, 'atv': atv,
               'Total_NumOrbs': Total_NumOrbs, 'FNAN': FNAN, 'natn': natn,
               'ncn': ncn, 'tv': tv, 'rtv': rtv, 'Gxyz': Gxyz, 'OLP': OLP,
               'OLPpox': OLPpox, 'OLPpoy': OLPpoy, 'OLPpoz': OLPpoz,
               'Solver': Solver, 'ChemP': ChemP, 'E_Temp': E_Temp,
               'dipole_moment_core': dipole_moment_core, 'iHks': iHks,
               'dipole_moment_background': dipole_moment_background,
               'Valence_Electrons': Valence_Electrons, 'atv_ijk': atv_ijk,
               'Total_SpinS': Total_SpinS, 'DM': DM
               }
    return scf_out


def read_band_file(filename=None):
    band_data = {}
    if not os.path.isfile(filename):
        return {}
    band_kpath = []
    eigen_bands = []
    with open(filename, 'r') as f:
        line = f.readline().split()
        nkpts = 0
        nband = int(line[0])
        nspin = int(line[1]) + 1
        band_data['nband'] = nband
        band_data['nspin'] = nspin
        line = f.readline().split()
        band_data['band_kpath_unitcell'] = [line[:3], line[3:6], line[6:9]]
        line = f.readline().split()
        band_data['band_nkpath'] = int(line[0])
        for i in range(band_data['band_nkpath']):
            line = f.readline().split()
            band_kpath.append(line)
            nkpts += int(line[0])
        band_data['nkpts'] = nkpts
        band_data['band_kpath'] = band_kpath
        kpts = np.zeros((nkpts, 3))
        eigen_bands = np.zeros((nspin, nkpts, nband))
        for i in range(nspin):
            for j in range(nkpts):
                line = f.readline()
                kpts[j] = np.array(line.split(), dtype=float)[1:]
                line = f.readline()
                eigen_bands[i, j] = np.array(line.split(), dtype=float)[:]
        band_data['eigenvalues'] = eigen_bands
        band_data['band_kpts'] = kpts
    return band_data


def read_electron_valency(filename='H_CA13'):
    array = []
    with open(filename, 'r') as f:
        array = f.readlines()
        f.close()
    required_line = ''
    for line in array:
        if 'valence.electron' in line:
            required_line = line
    return rn(required_line)


def rn(line='\n', n=1):
    """
    Read n'th to last value.
    For example:
        ...
        scf.XcType          LDA
        scf.Kgrid         4 4 4
        ...
    In Python,
        >>> str(rn(line, 1))
        LDA
        >>> line = f.readline()
        >>> int(rn(line, 3))
        4
    """
    return line.split()[-n]


def read_tuple_integer(line):
    return tuple([int(x) for x in line.split()[-3:]])


def read_tuple_float(line):
    return tuple([float(x) for x in line.split()[-3:]])


def read_integer(line):
    return int(rn(line))


def read_float(line):
    return float(rn(line))


def read_string(line):
    return str(rn(line))


def read_bool(line):
    bool = str(rn(line)).lower()
    if bool == 'on':
        return True
    elif bool == 'off':
        return False
    else:
        return None


def read_list_int(line):
    return [int(x) for x in line.split()[1:]]


def read_list_float(line):
    return [float(x) for x in line.split()[1:]]


def read_list_bool(line):
    return [read_bool(x) for x in line.split()[1:]]


def read_matrix(line, key, f):
    matrix = []
    line = f.readline()
    while key not in line:
        matrix.append(line.split())
        line = f.readline()
    return matrix


def read_stress_tensor(line, f, debug=None):
    f.readline()  # passing empty line
    f.readline()
    line = f.readline()
    xx, xy, xz = read_tuple_float(line)
    line = f.readline()
    yx, yy, yz = read_tuple_float(line)
    line = f.readline()
    zx, zy, zz = read_tuple_float(line)
    stress = [xx, yy, zz, (zy + yz)/2, (zx + xz)/2, (yx + xy)/2]
    return stress


def read_magmoms_and_total_magmom(line, f, debug=None):
    total_magmom = read_float(line)
    f.readline()  # Skip empty lines
    f.readline()
    line = f.readline()
    magmoms = []
    while not(line == '' or line.isspace()):
        magmoms.append(read_float(line))
        line = f.readline()
    return magmoms, total_magmom


def read_energy(line, f, debug=None):
    # It has Hartree unit yet
    return read_float(line)

def read_energies(line, f, debug=None):
    line = f.readline()
    if '***' in line:
        point = 7 # Version 3.8
    else:
        point = 16  # Version 3.9
    for i in range(point):
        f.readline()
    line = f.readline()
    energies = []
    while not(line == '' or line.isspace()):
        energies.append(float(line.split()[2]))
        line = f.readline()
    return energies

def read_eigenvalues(line, f, debug=False):
    """
    Read the Eigenvalues in the `.out` file and returns the eigenvalue
    First, it assumes system have two spins and start reading until it reaches
    the end('*****...').

        eigenvalues[spin][kpoint][nbands]

    For symmetry reason, `.out` file prints the eigenvalues at the half of the
    K points. Thus, we have to fill up the rest of the half.
    However, if the calculation was conducted only on the gamma point, it will
    raise the 'gamma_flag' as true and it will returns the original samples.
    """
    def prind(line):
        if debug:
            print(line)
    if 'Hartree' in line:
        return None
    prind("Read eigenvalue output")
    current_line = f.tell()
    f.seek(0)  # Seek for the kgrid information
    while line != '':
        line = f.readline().lower()
        if 'scf.kgrid' in line:
            break
    f.seek(current_line)  # Retrun to the original position

    kgrid = read_tuple_integer(line)
    line = f.readline()
    line = f.readline()
    if kgrid != ():
        prind('Non-Gamma point calculation')
        prind('scf.Kgrid is %d, %d, %d' % kgrid)
        gamma_flag = False
        f.seek(f.tell()+57)
    else:
        prind('Gamma point calculation')
        gamma_flag = True

    eigenvalues = []
    eigenvalues.append([])
    eigenvalues.append([])  # Assume two spins
    i = 0
    while 'Mulliken' not in line:
        line = f.readline()
        prind(line)
        eigenvalues[0].append([])
        eigenvalues[1].append([])
        while not (line == '' or line.isspace()):
            eigenvalues[0][i].append(float(rn(line, 2)))
            eigenvalues[1][i].append(float(rn(line, 1)))
            line = f.readline()
            prind(line)
        i += 1
        f.readline()
        f.readline()
        line = f.readline()
        prind(line)
    if gamma_flag:
        return np.asarray(eigenvalues)
    eigen_half = np.asarray(eigenvalues)
    prind(eigen_half)
    # Fill up the half
    spin, half_kpts, bands = eigen_half.shape
    even_odd = np.array(kgrid).prod() % 2
    eigen_values = np.zeros((spin, half_kpts*2-even_odd, bands))
    for i in range(half_kpts):
        eigen_values[0, i] = eigen_half[0, i, :]
        eigen_values[1, i] = eigen_half[1, i, :]
        eigen_values[0, 2*half_kpts-1-i-even_odd] = eigen_half[0, i, :]
        eigen_values[1, 2*half_kpts-1-i-even_odd] = eigen_half[1, i, :]
    return eigen_values


def read_forces(line, f, debug=None):
    # It has Hartree per Bohr unit yet
    forces = []
    f.readline()  # Skip Empty line
    line = f.readline()
    while 'coordinates.forces>' not in line:
        forces.append(read_tuple_float(line))
        line = f.readline()
    return np.array(forces)


def read_dipole(line, f, debug=None):
    dipole = []
    while 'Total' not in line:
        line = f.readline()
    dipole.append(read_tuple_float(line))
    return dipole


def read_scaled_positions(line, f, debug=None):
    scaled_positions = []
    f.readline()  # Skip Empty lines
    f.readline()
    f.readline()
    line = f.readline()
    while not(line == '' or line.isspace()):  # Detect empty line
        scaled_positions.append(read_tuple_float(line))
        line = f.readline()
    return scaled_positions


def read_chemical_potential(line, f, debug=None):
    return read_float(line)


def get_parameters(out_data=None, log_data=None, restart_data=None,
                   scfout_data=None, dat_data=None, band_data=None):
    """
    From the given data sets, construct the dictionary 'parameters'. If data
    is in the paramerters, it will save it.
    """
    from ase.calculators.openmx import parameters as param
    scaned_data = [dat_data, out_data, log_data, restart_data, scfout_data,
                   band_data]
    openmx_keywords = [param.tuple_integer_keys, param.tuple_float_keys,
                       param.tuple_bool_keys, param.integer_keys,
                       param.float_keys, param.string_keys, param.bool_keys,
                       param.list_int_keys, param.list_bool_keys,
                       param.list_float_keys, param.matrix_keys]
    parameters = {}
    for scaned_datum in scaned_data:
        for scaned_key in scaned_datum.keys():
            for openmx_keyword in openmx_keywords:
                if scaned_key in get_standard_key(openmx_keyword):
                    parameters[scaned_key] = scaned_datum[scaned_key]
                    continue
    translated_parameters = get_standard_parameters(parameters)
    parameters.update(translated_parameters)
    return {k: v for k, v in parameters.items() if v is not None}


def get_standard_key(key):
    """
    Standard ASE parameter format is to USE unerbar(_) instead of dot(.). Also,
    It is recommended to use lower case alphabet letter. Not Upper. Thus, we
    change the key to standard key
    For example:
        'scf.XcType' -> 'scf_xctype'
    """
    if isinstance(key, str):
        return key.lower().replace('.', '_')
    elif isinstance(key, list):
        return [k.lower().replace('.', '_') for k in key]
    else:
        return [k.lower().replace('.', '_') for k in key]


def get_standard_parameters(parameters):
    """
    Translate the OpenMX parameters to standard ASE parameters. For example,

        scf.XcType -> xc
        scf.maxIter -> maxiter
        scf.energycutoff -> energy_cutoff
        scf.Kgrid -> kpts
        scf.EigenvalueSolver -> eigensolver
        scf.SpinPolarization -> spinpol
        scf.criterion -> convergence
        scf.Electric.Field -> external
        scf.Mixing.Type -> mixer
        scf.system.charge -> charge

    We followed GPAW schem.
    """
    from ase.calculators.openmx import parameters as param
    from ase.units import Bohr, Ha, Ry, fs, m, s
    units = param.unit_dat_keywords
    standard_parameters = {}
    standard_units = {'eV': 1, 'Ha': Ha, 'Ry': Ry, 'Bohr': Bohr, 'fs': fs,
                      'K': 1, 'GV / m': 1e9/1.6e-19 / m, 'Ha/Bohr': Ha/Bohr,
                      'm/s': m/s, '_amu': 1, 'Tesla': 1}
    translated_parameters = {
        'scf.XcType': 'xc',
        'scf.maxIter': 'maxiter',
        'scf.energycutoff': 'energy_cutoff',
        'scf.Kgrid': 'kpts',
        'scf.EigenvalueSolver': 'eigensolver',
        'scf.SpinPolarization': 'spinpol',
        'scf.criterion': 'convergence',
        'scf.Electric.Field': 'external',
        'scf.Mixing.Type': 'mixer',
        'scf.system.charge': 'charge'
        }

    for key in parameters.keys():
        for openmx_key in translated_parameters.keys():
            if key == get_standard_key(openmx_key):
                standard_key = translated_parameters[openmx_key]
                unit = standard_units.get(units.get(openmx_key), 1)
                standard_parameters[standard_key] = parameters[key] * unit
    standard_parameters['spinpol'] = parameters.get('scf_spinpolarization')
    return standard_parameters


def get_atomic_formula(out_data=None, log_data=None, restart_data=None,
                       scfout_data=None, dat_data=None):
    """_formula'.
    OpenMX results gives following information. Since, we should pick one
    between position/scaled_position, scaled_positions are suppressed by
    default. We use input value of position. Not the position after
    calculation. It is temporal.

       Atoms.SpeciesAndCoordinate -> symbols
       Atoms.SpeciesAndCoordinate -> positions
       Atoms.UnitVectors -> cell
       scaled_positions -> scaled_positions
        If `positions` and `scaled_positions` are both given, this key deleted
       magmoms -> magmoms, Single value for each atom or three numbers for each
                           atom for non-collinear calculations.
    """
    atomic_formula = {}
    parameters = {'symbols': list, 'positions': list, 'scaled_positions': list,
                  'magmoms': list, 'cell': list}
    datas = [out_data, log_data, restart_data, scfout_data, dat_data]
    atoms_unitvectors = None
    atoms_spncrd_unit = 'ang'
    atoms_unitvectors_unit = 'ang'
    for data in datas:
        # positions unit save
        if 'atoms_speciesandcoordinates_unit' in data:
            atoms_spncrd_unit = data['atoms_speciesandcoordinates_unit']
        # cell unit save
        if 'atoms_unitvectors_unit' in data:
            atoms_unitvectors_unit = data['atoms_unitvectors_unit']
        # symbols, positions or scaled_positions
        if 'atoms_speciesandcoordinates' in data:
            atoms_spncrd = data['atoms_speciesandcoordinates']
        # cell
        if 'atoms_unitvectors' in data:
            atoms_unitvectors = data['atoms_unitvectors']
        # pbc
        if 'scf_eigenvaluesolver' in data:
            scf_eigenvaluesolver = data['scf_eigenvaluesolver']
        # ???
        for openmx_keyword in data.keys():
            for standard_keyword in parameters.keys():
                if openmx_keyword == standard_keyword:
                    atomic_formula[standard_keyword] = data[openmx_keyword]

    atomic_formula['symbols'] = [i[1] for i in atoms_spncrd]

    openmx_spncrd_keyword = [[i[2], i[3], i[4]] for i in atoms_spncrd]
    # Positions
    positions_unit = atoms_spncrd_unit.lower()
    positions = np.array(openmx_spncrd_keyword, dtype=float)
    if positions_unit == 'ang':
        atomic_formula['positions'] = positions
    elif positions_unit == 'frac':
        scaled_positions = np.array(openmx_spncrd_keyword, dtype=float)
        atomic_formula['scaled_positions'] = scaled_positions
    elif positions_unit == 'au':
        positions = np.array(openmx_spncrd_keyword, dtype=float) * Bohr
        atomic_formula['positions'] = positions

    # If Cluster, pbc is False, else it is True
    atomic_formula['pbc'] = scf_eigenvaluesolver.lower() != 'cluster'

    # Cell Handling
    if atoms_unitvectors is not None:
        openmx_cell_keyword = atoms_unitvectors
        cell = np.array(openmx_cell_keyword, dtype=float)
        if atoms_unitvectors_unit.lower() == 'ang':
            atomic_formula['cell'] =  openmx_cell_keyword
        elif atoms_unitvectors_unit.lower() == 'au':
            atomic_formula['cell'] = cell * Bohr

    # If `positions` and `scaled_positions` are both given, delete `scaled_..`
    if atomic_formula.get('scaled_positions') is not None and \
       atomic_formula.get('positions') is not None:
        del atomic_formula['scaled_positions']
    return atomic_formula


def get_results(out_data=None, log_data=None, restart_data=None,
                scfout_data=None, dat_data=None, band_data=None):
    """
    From the gien data sets, construct the dictionary 'results' and return it'
    OpenMX version 3.8 can yield following properties
       free_energy,              Ha       # Same value with energy
       energy,                   Ha
       energies,                 Ha
       forces,                   Ha/Bohr
       stress(after 3.8 only)    Ha/Bohr**3
       dipole                    Debye
       read_chemical_potential   Ha
       magmoms                   muB  ??  set to 1
       magmom                    muB  ??  set to 1
    """
    from numpy import array as arr
    results = {}
    implemented_properties = {'free_energy': Ha, 'energy': Ha, 'energies': Ha,
                              'forces': Ha/Bohr, 'stress': Ha/Bohr**3,
                              'dipole': Debye, 'chemical_potential': Ha,
                              'magmom': 1, 'magmoms': 1, 'eigenvalues': Ha}
    data = [out_data, log_data, restart_data, scfout_data, dat_data, band_data]
    for datum in data:
        for key in datum.keys():
            for property in implemented_properties.keys():
                if key == property:
                    results[key] = arr(datum[key])*implemented_properties[key]
    return results


def get_file_name(extension='.out', filename=None, absolute_directory=True):
    directory, prefix = os.path.split(filename)
    if directory == '':
        directory = os.curdir
    if absolute_directory:
        return os.path.abspath(directory + '/' + prefix + extension)
    else:
        return os.path.basename(directory + '/' + prefix + extension)
