import sys
import numpy as np
from math import factorial
from pytest import approx, fixture

from ase.build import molecule
from ase.calculators.emt import EMT
from ase.optimize import BFGS
from ase.vibrations import Vibrations
from ase.vibrations.franck_condon import (FranckCondonOverlap,
                                          FranckCondonRecursive,
                                          FranckCondon)


def test_franck_condon():

    def equal(x, y, tolerance=0, fail=True, msg=''):
        """Compare x and y."""

        if not np.isfinite(x - y).any() or (np.abs(x - y) > tolerance).any():
            msg = (msg + '%s != %s (error: |%s| > %.9g)' %
                   (x, y, x - y, tolerance))
            if fail:
                raise AssertionError(msg)
            else:
                sys.stderr.write('WARNING: %s\n' % msg)

    # FCOverlap

    fco = FranckCondonOverlap()
    fcr = FranckCondonRecursive()

    # check factorial
    assert(fco.factorial(8) == factorial(8))
    # the second test is useful according to the implementation
    assert(fco.factorial(5) == factorial(5))
    assert(fco.factorial.inv(5) == 1. / factorial(5))

    # check T=0 and n=0 equality
    S = np.array([1, 2.1, 34])
    m = 5
    assert(((fco.directT0(m, S) - fco.direct(0, m, S)) / fco.directT0(m, S) <
            1e-15).all())

    # check symmetry
    S = 2
    n = 3
    assert(fco.direct(n, m, S) == fco.direct(m, n, S))

    # ---------------------------
    # specials
    S = np.array([0, 1.5])
    delta = np.sqrt(2 * S)
    for m in [2, 7]:
        equal(fco.direct0mm1(m, S)**2,
              fco.direct(1, m, S) * fco.direct(m, 0, S), 1.e-17)
        equal(fco.direct0mm1(m, S), fcr.ov0mm1(m, delta), 1.e-15)
        equal(fcr.ov0mm1(m, delta),
              fcr.ov0m(m, delta) * fcr.ov1m(m, delta), 1.e-15)
        equal(fcr.ov0mm1(m, -delta), fcr.direct0mm1(m, -delta), 1.e-15)
        equal(fcr.ov0mm1(m, delta), - fcr.direct0mm1(m, -delta), 1.e-15)

        equal(fco.direct0mm2(m, S)**2,
              fco.direct(2, m, S) * fco.direct(m, 0, S), 1.e-17)
        equal(fco.direct0mm2(m, S), fcr.ov0mm2(m, delta), 1.e-15)
        equal(fcr.ov0mm2(m, delta),
              fcr.ov0m(m, delta) * fcr.ov2m(m, delta), 1.e-15)
        equal(fco.direct0mm2(m, S), fcr.direct0mm2(m, delta), 1.e-15)

        equal(fcr.direct0mm3(m, delta),
              fcr.ov0m(m, delta) * fcr.ov3m(m, delta), 1.e-15)

        equal(fcr.ov1mm2(m, delta),
              fcr.ov1m(m, delta) * fcr.ov2m(m, delta), 1.e-15)
        equal(fcr.direct1mm2(m, delta), fcr.ov1mm2(m, delta), 1.e-15)


@fixture(scope='module')
def unrelaxed():
    atoms = molecule('CH4')
    atoms.calc = EMT()
    return atoms


@fixture(scope='module')
def forces_a(unrelaxed):
    # evaluate forces in this configuration
    return unrelaxed.get_forces()


@fixture(scope='module')
def relaxed(unrelaxed):
    atoms = unrelaxed.copy()
    atoms.calc = unrelaxed.calc
    opt = BFGS(atoms, logfile=None)
    opt.run(fmax=0.01)
    return atoms


@fixture()
def vibname(relaxed):
    atoms = relaxed.copy()
    atoms.calc = relaxed.calc
    name = 'vib'
    vib = Vibrations(atoms, name=name)
    vib.run()
    return name


def test_ch4_all(forces_a, relaxed, vibname):
    """Evaluate Franck-Condon overlaps in
    a molecule suddenly exposed to a different potential"""

    # FC factor for all frequencies
    fc = FranckCondon(relaxed, vibname)
    ndof = 3 * len(relaxed)

    # by symmetry only one frequency has a non-vanishing contribution
    HR_a, f_a = fc.get_Huang_Rhys_factors(forces_a)
    assert len(HR_a) == ndof
    assert HR_a[:-1] == approx(0, abs=1e-10)
    assert HR_a[-1] == approx(0.859989171)

    FC, freq = fc.get_Franck_Condon_factors(293, forces_a)
    assert len(FC[0]) == 2 * ndof + 1
    assert len(freq[0]) == 2 * ndof + 1

    
def test_ch4_minfreq(forces_a, relaxed, vibname):
    # FC factor for relevant frequencies only
    fc = FranckCondon(relaxed, vibname, minfreq=2000)
    nrel = 4

    # single excitations
    FC, freq = fc.get_Franck_Condon_factors(293, forces_a)
    assert len(FC[0]) == 2 * nrel + 1
    assert len(freq[0]) == 2 * nrel + 1

    # include double excitations
    FC, freq = fc.get_Franck_Condon_factors(293, forces_a, 2)
    assert len(FC[1]) == 2 * nrel
    # assert len(FC[2]) == 22  # XXX why? - gives 20 in oldlibs???
    for i in range(3):
        assert len(freq[i]) == len(FC[i])
