"""Base module for all operators that create offspring."""
import numpy as np

from ase import Atoms


class OffspringCreator:
    """Base class for all procreation operators

    Parameters:

    verbose: Be verbose and print some stuff

    rng: Random number generator
        By default numpy.random.
    """

    def __init__(self, verbose=False, num_muts=1, rng=np.random):
        self.descriptor = 'OffspringCreator'
        self.verbose = verbose
        self.min_inputs = 0
        self.num_muts = num_muts
        self.rng = rng

    def get_min_inputs(self):
        """Returns the number of inputs required for a mutation,
        this is to know how many candidates should be selected
        from the population."""
        return self.min_inputs

    def get_new_individual(self, parents):
        """Function that returns a new individual.
        Overwrite in subclass."""
        raise NotImplementedError

    def finalize_individual(self, indi):
        """Call this function just before returning the new individual"""
        indi.info['key_value_pairs']['origin'] = self.descriptor

        return indi

    @classmethod
    def initialize_individual(cls, parent, indi=None):
        """Initializes a new individual that inherits some parameters
        from the parent, and initializes the info dictionary.
        If the new individual already has more structure it can be
        supplied in the parameter indi."""
        if indi is None:
            indi = Atoms(pbc=parent.get_pbc(), cell=parent.get_cell())
        else:
            indi = indi.copy()
        # key_value_pairs for numbers and strings
        indi.info['key_value_pairs'] = {'extinct': 0}
        # data for lists and the like
        indi.info['data'] = {}

        return indi


class OperationSelector:
    """Class used to randomly select a procreation operation
    from a list of operations.

    Parameters:

    probabilities: A list of probabilities with which the different
        mutations should be selected. The norm of this list
        does not need to be 1.

    oplist: The list of operations to select from.

    rng: Random number generator
        By default numpy.random.
    """

    def __init__(self, probabilities, oplist, rng=np.random):
        assert len(probabilities) == len(oplist)
        self.oplist = oplist
        self.rho = np.cumsum(probabilities)
        self.rng = rng

    def __get_index__(self):
        v = self.rng.rand() * self.rho[-1]
        for i in range(len(self.rho)):
            if self.rho[i] > v:
                return i

    def get_new_individual(self, candidate_list):
        """Choose operator and use it on the candidate. """
        to_use = self.__get_index__()
        return self.oplist[to_use].get_new_individual(candidate_list)

    def get_operator(self):
        """Choose operator and return it."""
        to_use = self.__get_index__()
        return self.oplist[to_use]


class CombinationMutation(OffspringCreator):
    """Combine two or more mutations into one operation.

    Parameters:

    mutations: Operator instances
        Supply two or more mutations that will applied one after the other
        as one mutation operation. The order of the supplied mutations prevail
        when applying the mutations.

    """

    def __init__(self, *mutations, verbose=False):
        super(CombinationMutation, self).__init__(verbose=verbose)
        self.descriptor = 'CombinationMutation'

        # Check that a combination mutation makes sense
        msg = "Too few operators supplied to a CombinationMutation"
        assert len(mutations) > 1, msg

        self.operators = mutations

    def get_new_individual(self, parents):
        f = parents[0]

        indi = self.mutate(f)
        if indi is None:
            return indi, 'mutation: {}'.format(self.descriptor)

        indi = self.initialize_individual(f, indi)
        indi.info['data']['parents'] = [f.info['confid']]

        return (self.finalize_individual(indi),
                'mutation: {}'.format(self.descriptor))

    def mutate(self, atoms):
        """Perform the mutations one at a time."""
        for op in self.operators:
            if atoms is not None:
                atoms = op.mutate(atoms)
        return atoms
