# fmt: off

import argparse
import traceback
from math import pi
from time import time
from typing import Union

import numpy as np

import ase.db
import ase.optimize
from ase import Atoms
from ase.calculators.emt import EMT
from ase.io import Trajectory

all_optimizers = ase.optimize.__all__ + ['PreconLBFGS', 'PreconFIRE',
                                         'SciPyFminCG', 'SciPyFminBFGS']
all_optimizers.remove('QuasiNewton')
all_optimizers.remove('RestartError')


def get_optimizer(name):
    # types: (str) -> ase.optimize.Optimizer
    if name.startswith('Precon'):
        import ase.optimize.precon as precon
        return getattr(precon, name)
    if name.startswith('SciPy'):
        import ase.optimize.sciopt as sciopt
        return getattr(sciopt, name)
    return getattr(ase.optimize, name)


class Wrapper:
    """Atoms-object wrapper that can count number of moves."""

    def __init__(
        self,
        atoms: Atoms,
        gridspacing: float = 0.2,
        eggbox: float = 0.0,
    ) -> None:
        self.t0 = time()
        self.texcl = 0.0
        self.nsteps = 0
        self.atoms = atoms
        self.ready = False
        self.pos: Union[np.ndarray, None] = None
        self.eggbox = eggbox

        self.x = None
        if eggbox:
            # Find small unit cell for grid-points
            h = []
            for axis in atoms.get_cell(complete=True):
                L = np.linalg.norm(axis)
                n = int(L / gridspacing)
                h.append(axis / n)
            self.x = np.linalg.inv(h)

    def get_potential_energy(self, force_consistent=False):
        t1 = time()
        e = self.atoms.get_potential_energy(force_consistent)

        if self.eggbox:
            # Add egg-box error:
            s = np.dot(self.atoms.positions, self.x)
            e += np.cos(2 * pi * s).sum() * self.eggbox / 6

        t2 = time()
        self.texcl += t2 - t1
        if not self.ready:
            self.nsteps += 1
        self.ready = True
        return e

    def get_forces(self):
        t1 = time()
        f = self.atoms.get_forces()

        if self.eggbox:
            # Add egg-box error:
            s = np.dot(self.atoms.positions, self.x)
            f += np.dot(np.sin(2 * pi * s),
                        self.x.T) * (2 * pi * self.eggbox / 6)

        t2 = time()
        self.texcl += t2 - t1
        if not self.ready:
            self.nsteps += 1
        self.ready = True
        return f

    def set_positions(self, pos):
        if self.pos is not None and abs(pos - self.pos).max() > 1e-15:
            self.ready = False
            if self.nsteps == 200:
                raise RuntimeError('Did not converge!')

        self.pos = pos
        self.atoms.set_positions(pos)

    def get_positions(self):
        return self.atoms.get_positions()

    def get_calculator(self):
        return self.atoms.calc

    def __len__(self):
        return len(self.atoms)

    def __ase_optimizable__(self):
        from ase.optimize.optimize import OptimizableAtoms
        return OptimizableAtoms(self)


def run_test(atoms, optimizer, tag, fmax=0.02, eggbox=0.0):
    """Optimize atoms with optimizer."""
    wrapper = Wrapper(atoms, eggbox=eggbox)
    relax = optimizer(wrapper, logfile=tag + '.log')
    relax.attach(Trajectory(tag + '.traj', 'w', atoms=atoms))

    tincl = -time()
    error = ''

    try:
        relax.run(fmax=fmax, steps=10000000)
    except Exception as x:
        wrapper.nsteps = float('inf')
        error = f'{x.__class__.__name__}: {x}'
        tb = traceback.format_exc()

        with open(tag + '.err', 'w') as fd:
            fd.write(f'{error}\n{tb}\n')

    tincl += time()

    return error, wrapper.nsteps, wrapper.texcl, tincl


def test_optimizer(systems, optimizer, calculator, prefix='', db=None,
                   eggbox=0.0):
    """Test optimizer on systems."""

    for name, atoms in systems:
        if db is not None:
            optname = optimizer.__name__
            id = db.reserve(optimizer=optname, name=name)
            if id is None:
                continue
        atoms = atoms.copy()
        tag = f'{prefix}{optname}-{name}'
        atoms.calc = calculator(txt=tag + '.txt')
        error, nsteps, texcl, tincl = run_test(atoms, optimizer, tag,
                                               eggbox=eggbox)

        if db is not None:
            db.write(atoms,
                     id=id,
                     optimizer=optname,
                     name=name,
                     error=error,
                     n=nsteps,
                     t=texcl,
                     T=tincl,
                     eggbox=eggbox)


def main():
    parser = argparse.ArgumentParser(
        description='Test ASE optimizers')

    parser.add_argument('systems', help='File containing test systems.')
    parser.add_argument('optimizer', nargs='*',
                        help='Optimizer name(s).  Choose from: {}. '
                        .format(', '.join(all_optimizers)) +
                        'Default is all optimizers.')
    parser.add_argument('-e', '--egg-box', type=float, default=0.0,
                        help='Fake egg-box error in eV.')

    args = parser.parse_args()

    systems = [(row.name, row.toatoms())
               for row in ase.db.connect(args.systems).select()]

    db = ase.db.connect('results.db')

    if not args.optimizer:
        args.optimizer = all_optimizers

    for opt in args.optimizer:
        print(opt)
        optimizer = get_optimizer(opt)
        test_optimizer(systems, optimizer, EMT, db=db, eggbox=args.egg_box)


if __name__ == '__main__':
    main()
