# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module contains convenience functions implementing some of the
algorithms contained within Jean Meeus, 'Astronomical Algorithms',
second edition, 1998, Willmann-Bell.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import numpy as np
from numpy.polynomial.polynomial import polyval

from .. import units as u
from .. import _erfa as erfa
from . import ICRS, SkyCoord, GeocentricTrueEcliptic
from .builtin_frames.utils import get_jd12

__all__ = ["calc_moon"]

# Meeus 1998: table 47.A
#   D   M   M'  F   l    r
_MOON_L_R = (
     (0, 0,  1,  0,  6288774,    -20905355),
     (2, 0,  -1, 0,  1274027,    -3699111),
     (2, 0,  0,  0,  658314,     -2955968),
     (0, 0,  2,  0,  213618,     -569925),
     (0, 1,  0,  0,  -185116,    48888),
     (0, 0,  0,  2,  -114332,    -3149),
     (2, 0,  -2, 0,  58793,      246158),
     (2, -1, -1, 0,  57066,      -152138),
     (2, 0,  1,  0,  53322,      -170733),
     (2, -1, 0,  0,  45758,      -204586),
     (0, 1,  -1, 0,  -40923,     -129620),
     (1, 0,  0,  0,  -34720,     108743),
     (0, 1,  1,  0,  -30383,     104755),
     (2, 0,  0,  -2, 15327,      10321),
     (0, 0,  1,  2,  -12528,     0),
     (0, 0,  1,  -2, 10980,      79661),
     (4, 0,  -1, 0,  10675,      -34782),
     (0, 0,  3,  0,  10034,      -23210),
     (4, 0,  -2, 0,  8548,       -21636),
     (2, 1,  -1, 0,  -7888,      24208),
     (2, 1,  0,  0,  -6766,      30824),
     (1, 0,  -1, 0,  -5163,      -8379),
     (1, 1,  0,  0,  4987,       -16675),
     (2, -1, 1,  0,  4036,       -12831),
     (2, 0,  2,  0,  3994,       -10445),
     (4, 0,  0,  0,  3861,       -11650),
     (2, 0,  -3, 0,  3665,       14403),
     (0, 1,  -2, 0,  -2689,      -7003),
     (2, 0,  -1, 2,  -2602,      0),
     (2, -1, -2, 0,  2390,       10056),
     (1, 0,  1,  0,  -2348,      6322),
     (2, -2, 0,  0,  2236,       -9884),
     (0, 1,  2,  0,  -2120,      5751),
     (0, 2,  0,  0,  -2069,      0),
     (2, -2, -1, 0,  2048,       -4950),
     (2, 0,  1,  -2, -1773,      4130),
     (2, 0,  0,  2,  -1595,      0),
     (4, -1, -1, 0,  1215,       -3958),
     (0, 0,  2,  2,  -1110,      0),
     (3, 0,  -1, 0,  -892,       3258),
     (2, 1,  1,  0,  -810,       2616),
     (4, -1, -2, 0,  759,        -1897),
     (0, 2,  -1, 0,  -713,       -2117),
     (2, 2,  -1, 0,  -700,       2354),
     (2, 1,  -2, 0,  691,        0),
     (2, -1, 0,  -2, 596,        0),
     (4, 0,  1,  0,  549,        -1423),
     (0, 0,  4,  0,  537,        -1117),
     (4, -1, 0,  0,  520,        -1571),
     (1, 0,  -2, 0,  -487,       -1739),
     (2, 1,  0,  -2, -399,       0),
     (0, 0,  2,  -2, -381,       -4421),
     (1, 1,  1,  0,  351,        0),
     (3, 0,  -2, 0,  -340,       0),
     (4, 0,  -3, 0,  330,        0),
     (2, -1, 2,  0,  327,        0),
     (0, 2,  1,  0,  -323,       1165),
     (1, 1,  -1, 0,  299,        0),
     (2, 0,  3,  0,  294,        0),
     (2, 0,  -1, -2, 0,          8752)
)

# Meeus 1998: table 47.B
#   D   M   M'  F   b
_MOON_B = (
     (0, 0,  0,  1,  5128122),
     (0, 0,  1,  1,  280602),
     (0, 0,  1,  -1, 277693),
     (2, 0,  0,  -1, 173237),
     (2, 0,  -1, 1,  55413),
     (2, 0,  -1, -1, 46271),
     (2, 0,  0,  1,  32573),
     (0, 0,  2,  1,  17198),
     (2, 0,  1,  -1, 9266),
     (0, 0,  2,  -1, 8822),
     (2, -1, 0,  -1, 8216),
     (2, 0,  -2, -1, 4324),
     (2, 0,  1,  1,  4200),
     (2, 1,  0,  -1, -3359),
     (2, -1, -1, 1,  2463),
     (2, -1, 0,  1,  2211),
     (2, -1, -1, -1, 2065),
     (0, 1,  -1, -1, -1870),
     (4, 0,  -1, -1, 1828),
     (0, 1,  0,  1,  -1794),
     (0, 0,  0,  3,  -1749),
     (0, 1,  -1, 1,  -1565),
     (1, 0,  0,  1,  -1491),
     (0, 1,  1,  1,  -1475),
     (0, 1,  1,  -1, -1410),
     (0, 1,  0,  -1, -1344),
     (1, 0,  0,  -1, -1335),
     (0, 0,  3,  1,  1107),
     (4, 0,  0,  -1, 1021),
     (4, 0,  -1, 1,  833),
     # second column
     (0, 0,  1,  -3, 777),
     (4, 0,  -2, 1,  671),
     (2, 0,  0,  -3, 607),
     (2, 0,  2,  -1, 596),
     (2, -1, 1,  -1, 491),
     (2, 0,  -2, 1,  -451),
     (0, 0,  3,  -1, 439),
     (2, 0,  2,  1,  422),
     (2, 0,  -3, -1, 421),
     (2, 1,  -1, 1,  -366),
     (2, 1,  0,  1,  -351),
     (4, 0,  0,  1,  331),
     (2, -1, 1,  1,  315),
     (2, -2, 0,  -1, 302),
     (0, 0,  1,  3,  -283),
     (2, 1,  1,  -1, -229),
     (1, 1,  0,  -1, 223),
     (1, 1,  0,  1,  223),
     (0, 1,  -2, -1, -220),
     (2, 1,  -1, -1, -220),
     (1, 0,  1,  1,  -185),
     (2, -1, -2, -1, 181),
     (0, 1,  2,  1,  -177),
     (4, 0,  -2, -1, 176),
     (4, -1, -1, -1, 166),
     (1, 0,  1,  -1, -164),
     (4, 0,  1,  -1, 132),
     (1, 0,  -1, -1, -119),
     (4, -1, 0,  -1, 115),
     (2, -2, 0,  1,  107)
)

"""
Coefficients of polynomials for various terms:

Lc : Mean longitude of Moon, w.r.t mean Equinox of date
D : Mean elongation of the Moon
M: Sun's mean anomaly
Mc : Moon's mean anomaly
F : Moon's argument of latitude (mean distance of Moon from its ascending node).
"""
_coLc = (2.18316448e+02,  4.81267881e+05, -1.57860000e-03,
         1.85583502e-06, -1.53388349e-08)
_coD = (2.97850192e+02,  4.45267111e+05, -1.88190000e-03,
        1.83194472e-06, -8.84447000e-09)
_coM = (3.57529109e+02,  3.59990503e+04, -1.53600000e-04,
        4.08329931e-08)
_coMc = (1.34963396e+02,  4.77198868e+05,  8.74140000e-03,
         1.43474081e-05, -6.79717238e-08)
_coF = (9.32720950e+01,  4.83202018e+05, -3.65390000e-03,
        -2.83607487e-07,  1.15833246e-09)
_coA1 = (119.75, 131.849)
_coA2 = (53.09, 479264.290)
_coA3 = (313.45, 481266.484)
_coE = (1.0, -0.002516, -0.0000074)


def calc_moon(t):
    """
    Lunar position model ELP2000-82 of (Chapront-Touze' and Chapront, 1983, 124, 50)

    This is the simplified version of Jean Meeus, Astronomical Algorithms,
    second edition, 1998, Willmann-Bell. Meeus claims approximate accuracy of 10"
    in longitude and 4" in latitude, with no specified time range.

    Tests against JPL ephemerides show accuracy of 10 arcseconds and 50 km over the
    date range CE 1950-2050.

    Parameters
    -----------
    time : `~astropy.time.Time`
        Time of observation.

    Returns
    --------
    skycoord : `~astropy.coordinates.SkyCoord`
        ICRS Coordinate for the body
    """
    # number of centuries since J2000.0.
    # This should strictly speaking be in Ephemeris Time, but TDB or TT
    # will introduce error smaller than intrinsic accuracy of algorithm.
    T = (t.tdb.jyear-2000.0)/100.

    # constants that are needed for all calculations
    Lc = u.Quantity(polyval(T, _coLc), u.deg)
    D = u.Quantity(polyval(T, _coD), u.deg)
    M = u.Quantity(polyval(T, _coM), u.deg)
    Mc = u.Quantity(polyval(T, _coMc), u.deg)
    F = u.Quantity(polyval(T, _coF), u.deg)

    A1 = u.Quantity(polyval(T, _coA1), u.deg)
    A2 = u.Quantity(polyval(T, _coA2), u.deg)
    A3 = u.Quantity(polyval(T, _coA3), u.deg)
    E = polyval(T, _coE)

    suml = sumr = 0.0
    for DNum, MNum, McNum, FNum, LFac, RFac in _MOON_L_R:
        corr = E ** abs(MNum)
        suml += LFac*corr*np.sin(D*DNum+M*MNum+Mc*McNum+F*FNum)
        sumr += RFac*corr*np.cos(D*DNum+M*MNum+Mc*McNum+F*FNum)

    sumb = 0.0
    for DNum, MNum, McNum, FNum, BFac in _MOON_B:
        corr = E ** abs(MNum)
        sumb += BFac*corr*np.sin(D*DNum+M*MNum+Mc*McNum+F*FNum)

    suml += (3958*np.sin(A1) + 1962*np.sin(Lc-F) + 318*np.sin(A2))
    sumb += (-2235*np.sin(Lc) + 382*np.sin(A3) + 175*np.sin(A1-F) +
             175*np.sin(A1+F) + 127*np.sin(Lc-Mc) - 115*np.sin(Lc+Mc))

    # ensure units
    suml = suml*u.microdegree
    sumb = sumb*u.microdegree

    # nutation of longitude
    jd1, jd2 = get_jd12(t, 'tt')
    nut, _ = erfa.nut06a(jd1, jd2)
    nut = nut*u.rad

    # calculate ecliptic coordinates
    lon = Lc + suml + nut
    lat = sumb
    dist = (385000.56+sumr/1000)*u.km

    # Meeus algorithm gives GeocentricTrueEcliptic coordinates
    ecliptic_coo = GeocentricTrueEcliptic(lon, lat, distance=dist,
                                          equinox=t)

    return SkyCoord(ecliptic_coo.transform_to(ICRS))
