# Licensed under a 3-clause BSD style license - see LICENSE.rst

"""Mathematical models."""

from __future__ import (absolute_import, unicode_literals, division,
                        print_function)
import warnings
import numpy as np
from .core import (Fittable1DModel, Fittable2DModel, Model,
                   ModelDefinitionError)
from .parameters import Parameter, InputParameterError
from .utils import ellipse_extent
from ..extern.six.moves import map
from ..utils.exceptions import AstropyDeprecationWarning


__all__ = ['AiryDisk2D', 'Moffat1D', 'Moffat2D', 'Box1D', 'Box2D', 'Const1D',
           'Const2D', 'Ellipse2D', 'Disk2D', 'BaseGaussian1D', 'Gaussian1D',
           'GaussianAbsorption1D', 'Gaussian2D', 'Linear1D', 'Lorentz1D',
           'MexicanHat1D', 'MexicanHat2D', 'RedshiftScaleFactor', 'Redshift',
           'Scale', 'Sersic1D', 'Sersic2D', 'Shift', 'Sine1D', 'Trapezoid1D',
           'TrapezoidDisk2D', 'Ring2D', 'Voigt1D']


class BaseGaussian1D(Fittable1DModel):
    """Base class for 1D Gaussian models. Do not use this directly.

    See Also
    --------
    Gaussian1D, GaussianAbsorption1D
    """

    amplitude = Parameter(default=1)
    mean = Parameter(default=0)
    stddev = Parameter(default=1)

    def bounding_box(self, factor=5.5):
        """
        Tuple defining the default ``bounding_box`` limits,
        ``(x_low, x_high)``

        Parameters
        ----------
        factor : float
            The multiple of `stddev` used to define the limits.
            The default is 5.5, corresponding to a relative error < 1e-7.

        Examples
        --------
        >>> from astropy.modeling.models import Gaussian1D
        >>> model = Gaussian1D(mean=0, stddev=2)
        >>> model.bounding_box
        (-11.0, 11.0)

        This range can be set directly (see: `Model.bounding_box
        <astropy.modeling.Model.bounding_box>`) or by using a different factor,
        like:

        >>> model.bounding_box = model.bounding_box(factor=2)
        >>> model.bounding_box
        (-4.0, 4.0)
        """

        x0 = self.mean.value
        dx = factor * self.stddev

        return (x0 - dx, x0 + dx)


class Gaussian1D(BaseGaussian1D):
    """
    One dimensional Gaussian model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the Gaussian.
    mean : float
        Mean of the Gaussian.
    stddev : float
        Standard deviation of the Gaussian.

    Notes
    -----

    Model formula:

        .. math:: f(x) = A e^{- \\frac{\\left(x - x_{0}\\right)^{2}}{2 \\sigma^{2}}}

    Examples
    --------
    >>> from astropy.modeling import models
    >>> def tie_center(model):
    ...         mean = 50 * model.stddev
    ...         return mean
    >>> tied_parameters = {'mean': tie_center}

    Specify that 'mean' is a tied parameter in one of two ways:

    >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3,
    ...                             tied=tied_parameters)

    or

    >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3)
    >>> g1.mean.tied
    False
    >>> g1.mean.tied = tie_center
    >>> g1.mean.tied
    <function tie_center at 0x...>

    Fixed parameters:

    >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3,
    ...                        fixed={'stddev': True})
    >>> g1.stddev.fixed
    True

    or

    >>> g1 = models.Gaussian1D(amplitude=10, mean=5, stddev=.3)
    >>> g1.stddev.fixed
    False
    >>> g1.stddev.fixed = True
    >>> g1.stddev.fixed
    True

    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import Gaussian1D

        plt.figure()
        s1 = Gaussian1D()
        r = np.arange(-5, 5, .01)

        for factor in range(1, 4):
            s1.amplitude = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -1, 4])
        plt.show()

    See Also
    --------
    Gaussian2D, Box1D, Moffat1D, Lorentz1D
    """

    @staticmethod
    def evaluate(x, amplitude, mean, stddev):
        """
        Gaussian1D model function.
        """
        return amplitude * np.exp(- 0.5 * (x - mean) ** 2 / stddev ** 2)

    @staticmethod
    def fit_deriv(x, amplitude, mean, stddev):
        """
        Gaussian1D model function derivatives.
        """

        d_amplitude = np.exp(-0.5 / stddev ** 2 * (x - mean) ** 2)
        d_mean = amplitude * d_amplitude * (x - mean) / stddev ** 2
        d_stddev = amplitude * d_amplitude * (x - mean) ** 2 / stddev ** 3
        return [d_amplitude, d_mean, d_stddev]


class GaussianAbsorption1D(BaseGaussian1D):
    """
    One dimensional Gaussian absorption line model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the gaussian absorption.
    mean : float
        Mean of the gaussian.
    stddev : float
        Standard deviation of the gaussian.

    Notes
    -----

    Model formula:

        .. math:: f(x) = 1 - A e^{- \\frac{\\left(x - x_{0}\\right)^{2}}{2 \\sigma^{2}}}

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt
        from astropy.modeling.models import GaussianAbsorption1D

        plt.figure()
        s1 = GaussianAbsorption1D()
        r = np.arange(-5, 5, .01)
        for factor in range(1, 4):
            s1.amplitude = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -3, 2])
        plt.show()

    See Also
    --------
    Gaussian1D
    """

    @staticmethod
    def evaluate(x, amplitude, mean, stddev):
        """
        GaussianAbsorption1D model function.
        """
        return 1.0 - Gaussian1D.evaluate(x, amplitude, mean, stddev)

    @staticmethod
    def fit_deriv(x, amplitude, mean, stddev):
        """
        GaussianAbsorption1D model function derivatives.
        """
        import operator
        return list(map(
            operator.neg, Gaussian1D.fit_deriv(x, amplitude, mean, stddev)))


class Gaussian2D(Fittable2DModel):
    r"""
    Two dimensional Gaussian model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the Gaussian.
    x_mean : float
        Mean of the Gaussian in x.
    y_mean : float
        Mean of the Gaussian in y.
    x_stddev : float or None
        Standard deviation of the Gaussian in x before rotating by theta. Must
        be None if a covariance matrix (``cov_matrix``) is provided. If no
        ``cov_matrix`` is given, ``None`` means the default value (1).
    y_stddev : float or None
        Standard deviation of the Gaussian in y before rotating by theta. Must
        be None if a covariance matrix (``cov_matrix``) is provided. If no
        ``cov_matrix`` is given, ``None`` means the default value (1).
    theta : float, optional
        Rotation angle in radians. The rotation angle increases
        counterclockwise.  Must be None if a covariance matrix (``cov_matrix``)
        is provided. If no ``cov_matrix`` is given, ``None`` means the default
        value (0).
    cov_matrix : ndarray, optional
        A 2x2 covariance matrix. If specified, overrides the ``x_stddev``,
        ``y_stddev``, and ``theta`` defaults.

    Notes
    -----
    Model formula:

        .. math::

            f(x, y) = A e^{-a\left(x - x_{0}\right)^{2}  -b\left(x - x_{0}\right)
            \left(y - y_{0}\right)  -c\left(y - y_{0}\right)^{2}}

    Using the following definitions:

        .. math::
            a = \left(\frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} +
            \frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)

            b = \left(\frac{\sin{\left (2 \theta \right )}}{2 \sigma_{x}^{2}} -
            \frac{\sin{\left (2 \theta \right )}}{2 \sigma_{y}^{2}}\right)

            c = \left(\frac{\sin^{2}{\left (\theta \right )}}{2 \sigma_{x}^{2}} +
            \frac{\cos^{2}{\left (\theta \right )}}{2 \sigma_{y}^{2}}\right)

    If using a ``cov_matrix``, the model is of the form:
        .. math::
            f(x, y) = A e^{-0.5 \left(\vec{x} - \vec{x}_{0}\right)^{T} \Sigma^{-1} \left(\vec{x} - \vec{x}_{0}\right)}

    where :math:`\vec{x} = [x, y]`, :math:`\vec{x}_{0} = [x_{0}, y_{0}]`,
    and :math:`\Sigma` is the covariance matrix:

        .. math::
            \Sigma = \left(\begin{array}{ccc}
            \sigma_x^2               & \rho \sigma_x \sigma_y \\
            \rho \sigma_x \sigma_y   & \sigma_y^2
            \end{array}\right)

    :math:`\rho` is the correlation between ``x`` and ``y``, which should
    be between -1 and +1.  Positive correlation corresponds to a
    ``theta`` in the range 0 to 90 degrees.  Negative correlation
    corresponds to a ``theta`` in the range of 0 to -90 degrees.

    See [1]_ for more details about the 2D Gaussian function.

    See Also
    --------
    Gaussian1D, Box2D, Moffat2D

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Gaussian_function
    """

    amplitude = Parameter(default=1)
    x_mean = Parameter(default=0)
    y_mean = Parameter(default=0)
    x_stddev = Parameter(default=1)
    y_stddev = Parameter(default=1)
    theta = Parameter(default=0.0)

    def __init__(self, amplitude=amplitude.default, x_mean=x_mean.default,
                 y_mean=y_mean.default, x_stddev=None, y_stddev=None,
                 theta=None, cov_matrix=None, **kwargs):
        if cov_matrix is None:
            if x_stddev is None:
                x_stddev = self.__class__.x_stddev.default
            if y_stddev is None:
                y_stddev = self.__class__.y_stddev.default
            if theta is None:
                theta = self.__class__.theta.default
        else:
            if x_stddev is not None or y_stddev is not None or theta is not None:
                raise InputParameterError("Cannot specify both cov_matrix and "
                                          "x/y_stddev/theta")
            else:
                # Compute principle coordinate system transformation
                cov_matrix = np.array(cov_matrix)

                if cov_matrix.shape != (2, 2):
                    # TODO: Maybe it should be possible for the covariance matrix
                    # to be some (x, y, ..., z, 2, 2) array to be broadcast with
                    # other parameters of shape (x, y, ..., z)
                    # But that's maybe a special case to work out if/when needed
                    raise ValueError("Covariance matrix must be 2x2")

                eig_vals, eig_vecs = np.linalg.eig(cov_matrix)
                x_stddev, y_stddev = np.sqrt(eig_vals)
                y_vec = eig_vecs[:, 0]
                theta = np.arctan2(y_vec[1], y_vec[0])

        super(Gaussian2D, self).__init__(
            amplitude=amplitude, x_mean=x_mean, y_mean=y_mean,
            x_stddev=x_stddev, y_stddev=y_stddev, theta=theta, **kwargs)

    def bounding_box(self, factor=5.5):
        """
        Tuple defining the default ``bounding_box`` limits in each dimension,
        ``((y_low, y_high), (x_low, x_high))``

        The default offset from the mean is 5.5-sigma, corresponding
        to a relative error < 1e-7. The limits are adjusted for rotation.

        Parameters
        ----------
        factor : float, optional
            The multiple of `x_stddev` and `y_stddev` used to define the limits.
            The default is 5.5.

        Examples
        --------
        >>> from astropy.modeling.models import Gaussian2D
        >>> model = Gaussian2D(x_mean=0, y_mean=0, x_stddev=1, y_stddev=2)
        >>> model.bounding_box
        ((-11.0, 11.0), (-5.5, 5.5))

        This range can be set directly (see: `Model.bounding_box
        <astropy.modeling.Model.bounding_box>`) or by using a different factor
        like:

        >>> model.bounding_box = model.bounding_box(factor=2)
        >>> model.bounding_box
        ((-4.0, 4.0), (-2.0, 2.0))
        """

        a = factor * self.x_stddev
        b = factor * self.y_stddev
        theta = self.theta.value
        dx, dy = ellipse_extent(a, b, theta)

        return ((self.y_mean - dy, self.y_mean + dy),
                (self.x_mean - dx, self.x_mean + dx))

    @staticmethod
    def evaluate(x, y, amplitude, x_mean, y_mean, x_stddev, y_stddev, theta):
        """Two dimensional Gaussian function"""

        cost2 = np.cos(theta) ** 2
        sint2 = np.sin(theta) ** 2
        sin2t = np.sin(2. * theta)
        xstd2 = x_stddev ** 2
        ystd2 = y_stddev ** 2
        xdiff = x - x_mean
        ydiff = y - y_mean
        a = 0.5 * ((cost2 / xstd2) + (sint2 / ystd2))
        b = 0.5 * ((sin2t / xstd2) - (sin2t / ystd2))
        c = 0.5 * ((sint2 / xstd2) + (cost2 / ystd2))
        return amplitude * np.exp(-((a * xdiff ** 2) + (b * xdiff * ydiff) +
                                    (c * ydiff ** 2)))

    @staticmethod
    def fit_deriv(x, y, amplitude, x_mean, y_mean, x_stddev, y_stddev, theta):
        """Two dimensional Gaussian function derivative with respect to parameters"""

        cost = np.cos(theta)
        sint = np.sin(theta)
        cost2 = np.cos(theta) ** 2
        sint2 = np.sin(theta) ** 2
        cos2t = np.cos(2. * theta)
        sin2t = np.sin(2. * theta)
        xstd2 = x_stddev ** 2
        ystd2 = y_stddev ** 2
        xstd3 = x_stddev ** 3
        ystd3 = y_stddev ** 3
        xdiff = x - x_mean
        ydiff = y - y_mean
        xdiff2 = xdiff ** 2
        ydiff2 = ydiff ** 2
        a = 0.5 * ((cost2 / xstd2) + (sint2 / ystd2))
        b = 0.5 * ((sin2t / xstd2) - (sin2t / ystd2))
        c = 0.5 * ((sint2 / xstd2) + (cost2 / ystd2))
        g = amplitude * np.exp(-((a * xdiff2) + (b * xdiff * ydiff) +
                                 (c * ydiff2)))
        da_dtheta = (sint * cost * ((1. / ystd2) - (1. / xstd2)))
        da_dx_stddev = -cost2 / xstd3
        da_dy_stddev = -sint2 / ystd3
        db_dtheta = (cos2t / xstd2) - (cos2t / ystd2)
        db_dx_stddev = -sin2t / xstd3
        db_dy_stddev = sin2t / ystd3
        dc_dtheta = -da_dtheta
        dc_dx_stddev = -sint2 / xstd3
        dc_dy_stddev = -cost2 / ystd3
        dg_dA = g / amplitude
        dg_dx_mean = g * ((2. * a * xdiff) + (b * ydiff))
        dg_dy_mean = g * ((b * xdiff) + (2. * c * ydiff))
        dg_dx_stddev = g * (-(da_dx_stddev * xdiff2 +
                              db_dx_stddev * xdiff * ydiff +
                              dc_dx_stddev * ydiff2))
        dg_dy_stddev = g * (-(da_dy_stddev * xdiff2 +
                              db_dy_stddev * xdiff * ydiff +
                              dc_dy_stddev * ydiff2))
        dg_dtheta = g * (-(da_dtheta * xdiff2 +
                           db_dtheta * xdiff * ydiff +
                           dc_dtheta * ydiff2))
        return [dg_dA, dg_dx_mean, dg_dy_mean, dg_dx_stddev, dg_dy_stddev,
                dg_dtheta]


class Shift(Model):
    """
    Shift a coordinate.

    Parameters
    ----------
    offset : float
        Offset to add to a coordinate.
    """

    inputs = ('x',)
    outputs = ('x',)

    offset = Parameter(default=0)
    fittable = True

    @property
    def inverse(self):
        inv = self.copy()
        inv.offset *= -1
        return inv

    @staticmethod
    def evaluate(x, offset):
        return x + offset


class Scale(Model):
    """
    Multiply a model by a factor.

    Parameters
    ----------
    factor : float
        Factor by which to scale a coordinate.
    """

    inputs = ('x',)
    outputs = ('x',)

    factor = Parameter(default=1)
    linear = True
    fittable = True

    @property
    def inverse(self):
        inv = self.copy()
        inv.factor = 1 / self.factor
        return inv

    @staticmethod
    def evaluate(x, factor):
        return factor * x


class RedshiftScaleFactor(Fittable1DModel):
    """
    One dimensional redshift scale factor model.

    Parameters
    ----------
    z : float
        Redshift value.

    Notes
    -----
    Model formula:

        .. math:: f(x) = x (1 + z)
    """

    z = Parameter(description='redshift', default=0)

    @staticmethod
    def evaluate(x, z):
        """One dimensional RedshiftScaleFactor model function"""

        return (1 + z) * x

    @staticmethod
    def fit_deriv(x, z):
        """One dimensional RedshiftScaleFactor model derivative"""

        d_z = x
        return [d_z]

    @property
    def inverse(self):
        """Inverse RedshiftScaleFactor model"""

        inv = self.copy()
        inv.z = 1.0 / (1.0 + self.z) - 1.0
        return inv


class Redshift(RedshiftScaleFactor):
    """This is **deprecated**, use :class:`RedshiftScaleFactor`."""
    def __init__(self, *args):
        warnings.warn('The "Redshift" class is now deprecated -- use the '
                      '"RedshiftScaleFactor" class instead.',
                      AstropyDeprecationWarning)
        super(Redshift, self).__init__(*args)


class Sersic1D(Fittable1DModel):
    r"""
    One dimensional Sersic surface brightness profile.

    Parameters
    ----------
    amplitude : float
        Central surface brightness, within r_eff.
    r_eff : float
        Effective (half-light) radius
    n : float
        Sersic Index.

    See Also
    --------
    Gaussian1D, Moffat1D, Lorentz1D

    Notes
    -----
    Model formula:

    .. math::

        I(r)=I_e\exp\left\{-b_n\left[\left(\frac{r}{r_{e}}\right)^{(1/n)}-1\right]\right\}

    The constant :math:`b_n` is defined such that :math:`r_e` contains half the total
    luminosity, and can be solved for numerically.

    .. math::

        \Gamma(2n) = 2\gamma (b_n,2n)

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        from astropy.modeling.models import Sersic1D
        import matplotlib.pyplot as plt

        plt.figure()
        plt.subplot(111, xscale='log', yscale='log')
        s1 = Sersic1D(amplitude=1, r_eff=5)
        r=np.arange(0, 100, .01)

        for n in range(1, 10):
             s1.n = n
             plt.plot(r, s1(r), color=str(float(n) / 15))

        plt.axis([1e-1, 30, 1e-2, 1e3])
        plt.xlabel('log Radius')
        plt.ylabel('log Surface Brightness')
        plt.text(.25, 1.5, 'n=1')
        plt.text(.25, 300, 'n=10')
        plt.xticks([])
        plt.yticks([])
        plt.show()

    References
    ----------
    .. [1] http://ned.ipac.caltech.edu/level5/March05/Graham/Graham2.html
    """

    amplitude = Parameter(default=1)
    r_eff = Parameter(default=1)
    n = Parameter(default=4)
    _gammaincinv = None

    @classmethod
    def evaluate(cls, r, amplitude, r_eff, n):
        """One dimensional Sersic profile function."""

        if cls._gammaincinv is None:
            try:
                from scipy.special import gammaincinv
                cls._gammaincinv = gammaincinv
            except ValueError:
                raise ImportError('Sersic1D model requires scipy > 0.11.')

        return (amplitude * np.exp(
            -cls._gammaincinv(2 * n, 0.5) * ((r / r_eff) ** (1 / n) - 1)))


class Sine1D(Fittable1DModel):
    """
    One dimensional Sine model.

    Parameters
    ----------
    amplitude : float
        Oscillation amplitude
    frequency : float
        Oscillation frequency
    phase : float
        Oscillation phase

    See Also
    --------
    Const1D, Linear1D


    Notes
    -----
    Model formula:

        .. math:: f(x) = A \\sin(2 \\pi f x + 2 \\pi p)

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import Sine1D

        plt.figure()
        s1 = Sine1D(amplitude=1, frequency=.25)
        r=np.arange(0, 10, .01)

        for amplitude in range(1,4):
             s1.amplitude = amplitude
             plt.plot(r, s1(r), color=str(0.25 * amplitude), lw=2)

        plt.axis([0, 10, -5, 5])
        plt.show()
    """

    amplitude = Parameter(default=1)
    frequency = Parameter(default=1)
    phase = Parameter(default=0)

    @staticmethod
    def evaluate(x, amplitude, frequency, phase):
        """One dimensional Sine model function"""

        return amplitude * np.sin(2 * np.pi * frequency * x + 2 * np.pi * phase)

    @staticmethod
    def fit_deriv(x, amplitude, frequency, phase):
        """One dimensional Sine model derivative"""

        d_amplitude = np.sin(2 * np.pi * frequency * x + 2 * np.pi * phase)
        d_frequency = (2 * np.pi * x * amplitude *
                       np.cos(2 * np.pi * frequency * x + 2 * np.pi * phase))
        d_phase = (2 * np.pi * amplitude *
                   np.cos(2 * np.pi * frequency * x + 2 * np.pi * phase))
        return [d_amplitude, d_frequency, d_phase]


class Linear1D(Fittable1DModel):
    """
    One dimensional Line model.

    Parameters
    ----------
    slope : float
        Slope of the straight line

    intercept : float
        Intercept of the straight line

    See Also
    --------
    Const1D

    Notes
    -----
    Model formula:

        .. math:: f(x) = a x + b
    """

    slope = Parameter(default=1)
    intercept = Parameter(default=0)
    linear = True

    @staticmethod
    def evaluate(x, slope, intercept):
        """One dimensional Line model function"""

        return slope * x + intercept

    @staticmethod
    def fit_deriv(x, slope, intercept):
        """One dimensional Line model derivative with respect to parameters"""

        d_slope = x
        d_intercept = np.ones_like(x)
        return [d_slope, d_intercept]

    @property
    def inverse(self):
        new_slope = self.slope ** -1
        new_intercept = -self.intercept / self.slope
        return self.__class__(slope=new_slope, intercept=new_intercept)


class Planar2D(Fittable2DModel):
    """
    Two dimensional Plane model.

    Parameters
    ----------
    slope_x : float
        Slope of the straight line in X

    slope_y : float
        Slope of the straight line in Y

    intercept : float
        Z-intercept of the straight line

    See Also
    --------
    Linear1D, Polynomial2D

    Notes
    -----
    Model formula:

        .. math:: f(x, y) = a x + b y + c
    """

    slope_x = Parameter(default=1)
    slope_y = Parameter(default=1)
    intercept = Parameter(default=0)
    linear = True

    @staticmethod
    def evaluate(x, y, slope_x, slope_y, intercept):
        """Two dimensional Plane model function"""

        return slope_x * x + slope_y * y + intercept

    @staticmethod
    def fit_deriv(x, y, slope_x, slope_y, intercept):
        """Two dimensional Plane model derivative with respect to parameters"""

        d_slope_x = x
        d_slope_y = y
        d_intercept = np.ones_like(x)
        return [d_slope_x, d_slope_y, d_intercept]


class Lorentz1D(Fittable1DModel):
    """
    One dimensional Lorentzian model.

    Parameters
    ----------
    amplitude : float
        Peak value
    x_0 : float
        Position of the peak
    fwhm : float
        Full width at half maximum

    See Also
    --------
    Gaussian1D, Box1D, MexicanHat1D

    Notes
    -----
    Model formula:

    .. math::

        f(x) = \\frac{A \\gamma^{2}}{\\gamma^{2} + \\left(x - x_{0}\\right)^{2}}

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import Lorentz1D

        plt.figure()
        s1 = Lorentz1D()
        r = np.arange(-5, 5, .01)

        for factor in range(1, 4):
            s1.amplitude = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -1, 4])
        plt.show()
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    fwhm = Parameter(default=1)

    @staticmethod
    def evaluate(x, amplitude, x_0, fwhm):
        """One dimensional Lorentzian model function"""

        return (amplitude * ((fwhm / 2.) ** 2) / ((x - x_0) ** 2 +
                                                  (fwhm / 2.) ** 2))

    @staticmethod
    def fit_deriv(x, amplitude, x_0, fwhm):
        """One dimensional Lorentzian model derivative with respect to parameters"""

        d_amplitude = fwhm ** 2 / (fwhm ** 2 + (x - x_0) ** 2)
        d_x_0 = (amplitude * d_amplitude * (2 * x - 2 * x_0) /
                 (fwhm ** 2 + (x - x_0) ** 2))
        d_fwhm = 2 * amplitude * d_amplitude / fwhm * (1 - d_amplitude)
        return [d_amplitude, d_x_0, d_fwhm]

    def bounding_box(self, factor=25):
        """Tuple defining the default ``bounding_box`` limits,
        ``(x_low, x_high)``.

        Parameters
        ----------
        factor : float
            The multiple of FWHM used to define the limits.
            Default is chosen to include most (99%) of the
            area under the curve, while still showing the
            central feature of interest.

        """
        x0 = self.x_0.value
        dx = factor * self.fwhm

        return (x0 - dx, x0 + dx)


class Voigt1D(Fittable1DModel):
    """
    One dimensional model for the Voigt profile.

    Parameters
    ----------
    x_0 : float
        Position of the peak
    amplitude_L : float
        The Lorentzian amplitude
    fwhm_L : float
        The Lorentzian full width at half maximum
    fwhm_G : float
        The Gaussian full width at half maximum

    See Also
    --------
    Gaussian1D, Lorentz1D

    Notes
    -----
    Algorithm for the computation taken from
    McLean, A. B., Mitchell, C. E. J. & Swanston, D. M. Implementation of an
    efficient analytical approximation to the Voigt function for photoemission
    lineshape analysis. Journal of Electron Spectroscopy and Related Phenomena
    69, 125-132 (1994)

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        from astropy.modeling.models import Voigt1D
        import matplotlib.pyplot as plt

        plt.figure()
        x = np.arange(0, 10, 0.01)
        v1 = Voigt1D(x_0=5, amplitude_L=10, fwhm_L=0.5, fwhm_G=0.9)
        plt.plot(x, v1(x))
        plt.show()
    """

    x_0 = Parameter(default=0)
    amplitude_L = Parameter(default=1)
    fwhm_L = Parameter(default=2/np.pi)
    fwhm_G = Parameter(default=np.log(2))

    _abcd = np.array([
        [-1.2150, -1.3509, -1.2150, -1.3509],  # A
        [1.2359, 0.3786, -1.2359, -0.3786],    # B
        [-0.3085, 0.5906, -0.3085, 0.5906],    # C
        [0.0210, -1.1858, -0.0210, 1.1858]])   # D

    @classmethod
    def evaluate(cls, x, x_0, amplitude_L, fwhm_L, fwhm_G):

        A, B, C, D = cls._abcd
        sqrt_ln2 = np.sqrt(np.log(2))
        X = (x - x_0) * 2 * sqrt_ln2 / fwhm_G
        X = np.atleast_1d(X)[..., np.newaxis]
        Y = fwhm_L * sqrt_ln2 / fwhm_G
        Y = np.atleast_1d(Y)[..., np.newaxis]

        V = np.sum((C * (Y - A) + D * (X - B))/(((Y - A) ** 2 + (X - B) ** 2)), axis=-1)

        return (fwhm_L * amplitude_L * np.sqrt(np.pi) * sqrt_ln2 / fwhm_G) * V

    @classmethod
    def fit_deriv(cls, x, x_0, amplitude_L, fwhm_L, fwhm_G):

        A, B, C, D = cls._abcd
        sqrt_ln2 = np.sqrt(np.log(2))
        X = (x - x_0) * 2 * sqrt_ln2 / fwhm_G
        X = np.atleast_1d(X)[:, np.newaxis]
        Y = fwhm_L * sqrt_ln2 / fwhm_G
        Y = np.atleast_1d(Y)[:, np.newaxis]
        constant = fwhm_L * amplitude_L * np.sqrt(np.pi) * sqrt_ln2 / fwhm_G

        alpha = C * (Y - A) + D * (X - B)
        beta = (Y - A) ** 2 + (X - B) ** 2
        V = np.sum((alpha / beta), axis=-1)
        dVdx = np.sum((D/beta - 2 * (X - B) * alpha / np.square(beta)), axis=-1)
        dVdy = np.sum((C/beta - 2 * (Y - A) * alpha / np.square(beta)), axis=-1)

        dyda = [-constant * dVdx * 2 * sqrt_ln2 / fwhm_G,
                constant * V / amplitude_L,
                constant * (V / fwhm_L + dVdy * sqrt_ln2 / fwhm_G),
                -constant * (V + (sqrt_ln2 / fwhm_G) * (2 * (x - x_0) * dVdx + fwhm_L * dVdy)) / fwhm_G]
        return dyda


class Const1D(Fittable1DModel):
    """
    One dimensional Constant model.

    Parameters
    ----------
    amplitude : float
        Value of the constant function

    See Also
    --------
    Const2D

    Notes
    -----
    Model formula:

        .. math:: f(x) = A

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import Const1D

        plt.figure()
        s1 = Const1D()
        r = np.arange(-5, 5, .01)

        for factor in range(1, 4):
            s1.amplitude = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -1, 4])
        plt.show()
    """

    amplitude = Parameter(default=1)
    linear = True

    @staticmethod
    def evaluate(x, amplitude):
        """One dimensional Constant model function"""

        if amplitude.size == 1:
            # This is slightly faster than using ones_like and multiplying
            x = np.empty_like(x)
            x.fill(amplitude.item())
        else:
            # This case is less likely but could occur if the amplitude
            # parameter is given an array-like value
            x = amplitude * np.ones_like(x)

        return x

    @staticmethod
    def fit_deriv(x, amplitude):
        """One dimensional Constant model derivative with respect to parameters"""

        d_amplitude = np.ones_like(x)
        return [d_amplitude]


class Const2D(Fittable2DModel):
    """
    Two dimensional Constant model.

    Parameters
    ----------
    amplitude : float
        Value of the constant function

    See Also
    --------
    Const1D

    Notes
    -----
    Model formula:

        .. math:: f(x, y) = A
    """

    amplitude = Parameter(default=1)
    linear = True

    @staticmethod
    def evaluate(x, y, amplitude):
        """Two dimensional Constant model function"""

        if amplitude.size == 1:
            # This is slightly faster than using ones_like and multiplying
            x = np.empty_like(x)
            x.fill(amplitude.item())
        else:
            # This case is less likely but could occur if the amplitude
            # parameter is given an array-like value
            x = amplitude * np.ones_like(x)

        return x


class Ellipse2D(Fittable2DModel):
    """
    A 2D Ellipse model.

    Parameters
    ----------
    amplitude : float
        Value of the ellipse.

    x_0 : float
        x position of the center of the disk.

    y_0 : float
        y position of the center of the disk.

    a : float
        The length of the semimajor axis.

    b : float
        The length of the semiminor axis.

    theta : float
        The rotation angle in radians of the semimajor axis.  The
        rotation angle increases counterclockwise from the positive x
        axis.

    See Also
    --------
    Disk2D, Box2D

    Notes
    -----
    Model formula:

    .. math::

        f(x, y) = \\left \\{
                    \\begin{array}{ll}
                      \\mathrm{amplitude} & : \\left[\\frac{(x - x_0) \\cos
                        \\theta + (y - y_0) \\sin \\theta}{a}\\right]^2 +
                        \\left[\\frac{-(x - x_0) \\sin \\theta + (y - y_0)
                        \\cos \\theta}{b}\\right]^2  \\leq 1 \\\\
                      0 & : \\mathrm{otherwise}
                    \\end{array}
                  \\right.

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        from astropy.modeling.models import Ellipse2D
        from astropy.coordinates import Angle
        import matplotlib.pyplot as plt
        import matplotlib.patches as mpatches
        x0, y0 = 25, 25
        a, b = 20, 10
        theta = Angle(30, 'deg')
        e = Ellipse2D(amplitude=100., x_0=x0, y_0=y0, a=a, b=b,
                      theta=theta.radian)
        y, x = np.mgrid[0:50, 0:50]
        fig, ax = plt.subplots(1, 1)
        ax.imshow(e(x, y), origin='lower', interpolation='none', cmap='Greys_r')
        e2 = mpatches.Ellipse((x0, y0), 2*a, 2*b, theta.degree, edgecolor='red',
                              facecolor='none')
        ax.add_patch(e2)
        plt.show()
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    a = Parameter(default=1)
    b = Parameter(default=1)
    theta = Parameter(default=0)

    @staticmethod
    def evaluate(x, y, amplitude, x_0, y_0, a, b, theta):
        """Two dimensional Ellipse model function."""

        xx = x - x_0
        yy = y - y_0
        cost = np.cos(theta)
        sint = np.sin(theta)
        numerator1 = (xx * cost) + (yy * sint)
        numerator2 = -(xx * sint) + (yy * cost)
        in_ellipse = (((numerator1 / a) ** 2 + (numerator2 / b) ** 2) <= 1.)
        return np.select([in_ellipse], [amplitude])

    @property
    def bounding_box(self):
        """
        Tuple defining the default ``bounding_box`` limits.

        ``((y_low, y_high), (x_low, x_high))``
        """

        a = self.a
        b = self.b
        theta = self.theta.value
        dx, dy = ellipse_extent(a, b, theta)

        return ((self.y_0 - dy, self.y_0 + dy),
                (self.x_0 - dx, self.x_0 + dx))


class Disk2D(Fittable2DModel):
    """
    Two dimensional radial symmetric Disk model.

    Parameters
    ----------
    amplitude : float
        Value of the disk function
    x_0 : float
        x position center of the disk
    y_0 : float
        y position center of the disk
    R_0 : float
        Radius of the disk

    See Also
    --------
    Box2D, TrapezoidDisk2D

    Notes
    -----
    Model formula:

        .. math::

            f(r) = \\left \\{
                     \\begin{array}{ll}
                       A & : r \\leq R_0 \\\\
                       0 & : r > R_0
                     \\end{array}
                   \\right.
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    R_0 = Parameter(default=1)

    @staticmethod
    def evaluate(x, y, amplitude, x_0, y_0, R_0):
        """Two dimensional Disk model function"""

        rr = (x - x_0) ** 2 + (y - y_0) ** 2
        return np.select([rr <= R_0 ** 2], [amplitude])

    @property
    def bounding_box(self):
        """
        Tuple defining the default ``bounding_box`` limits.

        ``((y_low, y_high), (x_low, x_high))``
        """

        return ((self.y_0 - self.R_0, self.y_0 + self.R_0),
                (self.x_0 - self.R_0, self.x_0 + self.R_0))


class Ring2D(Fittable2DModel):
    """
    Two dimensional radial symmetric Ring model.

    Parameters
    ----------
    amplitude : float
        Value of the disk function
    x_0 : float
        x position center of the disk
    y_0 : float
        y position center of the disk
    r_in : float
        Inner radius of the ring
    width : float
        Width of the ring.
    r_out : float
        Outer Radius of the ring. Can be specified instead of width.

    See Also
    --------
    Disk2D, TrapezoidDisk2D

    Notes
    -----
    Model formula:

        .. math::

            f(r) = \\left \\{
                     \\begin{array}{ll}
                       A & : r_{in} \\leq r \\leq r_{out} \\\\
                       0 & : \\text{else}
                     \\end{array}
                   \\right.

    Where :math:`r_{out} = r_{in} + r_{width}`.
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    r_in = Parameter(default=1)
    width = Parameter(default=1)

    def __init__(self, amplitude=amplitude.default, x_0=x_0.default,
                 y_0=y_0.default, r_in=r_in.default, width=width.default,
                 r_out=None, **kwargs):
        if r_out is not None:
            if width is not None:
                raise InputParameterError(
                    "Cannot specify both width and outer radius separately.")
            width = r_out - r_in
        elif width is None:
            width = self.width.default

        super(Ring2D, self).__init__(
            amplitude=amplitude, x_0=x_0, y_0=y_0, r_in=r_in, width=width,
            **kwargs)

    @staticmethod
    def evaluate(x, y, amplitude, x_0, y_0, r_in, width):
        """Two dimensional Ring model function."""

        rr = (x - x_0) ** 2 + (y - y_0) ** 2
        r_range = np.logical_and(rr >= r_in ** 2, rr <= (r_in + width) ** 2)
        return np.select([r_range], [amplitude])

    @property
    def bounding_box(self):
        """
        Tuple defining the default ``bounding_box``.

        ``((y_low, y_high), (x_low, x_high))``
        """

        dr = self.r_in + self.width

        return ((self.y_0 - dr, self.y_0 + dr),
                (self.x_0 - dr, self.x_0 + dr))


class Delta1D(Fittable1DModel):
    """One dimensional Dirac delta function."""

    def __init__(self):
        raise ModelDefinitionError("Not implemented")


class Delta2D(Fittable2DModel):
    """Two dimensional Dirac delta function."""

    def __init__(self):
        raise ModelDefinitionError("Not implemented")


class Box1D(Fittable1DModel):
    """
    One dimensional Box model.

    Parameters
    ----------
    amplitude : float
        Amplitude A
    x_0 : float
        Position of the center of the box function
    width : float
        Width of the box

    See Also
    --------
    Box2D, TrapezoidDisk2D

    Notes
    -----
    Model formula:

      .. math::

            f(x) = \\left \\{
                     \\begin{array}{ll}
                       A & : x_0 - w/2 \\leq x \\leq x_0 + w/2 \\\\
                       0 & : \\text{else}
                     \\end{array}
                   \\right.

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import Box1D

        plt.figure()
        s1 = Box1D()
        r = np.arange(-5, 5, .01)

        for factor in range(1, 4):
            s1.amplitude = factor
            s1.width = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -1, 4])
        plt.show()
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    width = Parameter(default=1)

    @staticmethod
    def evaluate(x, amplitude, x_0, width):
        """One dimensional Box model function"""

        return np.select([np.logical_and(x >= x_0 - width / 2.,
                                         x <= x_0 + width / 2.)],
                         [amplitude], 0)

    @classmethod
    def fit_deriv(cls, x, amplitude, x_0, width):
        """One dimensional Box model derivative with respect to parameters"""

        d_amplitude = cls.evaluate(x, 1, x_0, width)
        d_x_0 = np.zeros_like(x)
        d_width = np.zeros_like(x)
        return [d_amplitude, d_x_0, d_width]

    @property
    def bounding_box(self):
        """
        Tuple defining the default ``bounding_box`` limits.

        ``(x_low, x_high))``
        """

        dx = self.width / 2

        return (self.x_0 - dx, self.x_0 + dx)


class Box2D(Fittable2DModel):
    """
    Two dimensional Box model.

    Parameters
    ----------
    amplitude : float
        Amplitude A
    x_0 : float
        x position of the center of the box function
    x_width : float
        Width in x direction of the box
    y_0 : float
        y position of the center of the box function
    y_width : float
        Width in y direction of the box

    See Also
    --------
    Box1D, Gaussian2D, Moffat2D

    Notes
    -----
    Model formula:

      .. math::

            f(x, y) = \\left \\{
                     \\begin{array}{ll}
            A : & x_0 - w_x/2 \\leq x \\leq x_0 + w_x/2 \\text{ and} \\\\
                & y_0 - w_y/2 \\leq y \\leq y_0 + w_y/2 \\\\
            0 : & \\text{else}
                     \\end{array}
                   \\right.

    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    x_width = Parameter(default=1)
    y_width = Parameter(default=1)

    @staticmethod
    def evaluate(x, y, amplitude, x_0, y_0, x_width, y_width):
        """Two dimensional Box model function"""

        x_range = np.logical_and(x >= x_0 - x_width / 2.,
                                 x <= x_0 + x_width / 2.)
        y_range = np.logical_and(y >= y_0 - y_width / 2.,
                                 y <= y_0 + y_width / 2.)
        return np.select([np.logical_and(x_range, y_range)], [amplitude], 0)

    @property
    def bounding_box(self):
        """
        Tuple defining the default ``bounding_box``.

        ``((y_low, y_high), (x_low, x_high))``
        """

        dx = self.x_width / 2
        dy = self.y_width / 2

        return ((self.y_0 - dy, self.y_0 + dy),
                (self.x_0 - dx, self.x_0 + dx))


class Trapezoid1D(Fittable1DModel):
    """
    One dimensional Trapezoid model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the trapezoid
    x_0 : float
        Center position of the trapezoid
    width : float
        Width of the constant part of the trapezoid.
    slope : float
        Slope of the tails of the trapezoid

    See Also
    --------
    Box1D, Gaussian1D, Moffat1D

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import Trapezoid1D

        plt.figure()
        s1 = Trapezoid1D()
        r = np.arange(-5, 5, .01)

        for factor in range(1, 4):
            s1.amplitude = factor
            s1.width = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -1, 4])
        plt.show()
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    width = Parameter(default=1)
    slope = Parameter(default=1)

    @staticmethod
    def evaluate(x, amplitude, x_0, width, slope):
        """One dimensional Trapezoid model function"""

        # Compute the four points where the trapezoid changes slope
        # x1 <= x2 <= x3 <= x4
        x2 = x_0 - width / 2.
        x3 = x_0 + width / 2.
        x1 = x2 - amplitude / slope
        x4 = x3 + amplitude / slope

        # Compute model values in pieces between the change points
        range_a = np.logical_and(x >= x1, x < x2)
        range_b = np.logical_and(x >= x2, x < x3)
        range_c = np.logical_and(x >= x3, x < x4)
        val_a = slope * (x - x1)
        val_b = amplitude
        val_c = slope * (x4 - x)
        return np.select([range_a, range_b, range_c], [val_a, val_b, val_c])

    @property
    def bounding_box(self):
        """
        Tuple defining the default ``bounding_box`` limits.

        ``(x_low, x_high))``
        """

        dx = self.width / 2 + self.amplitude / self.slope

        return (self.x_0 - dx, self.x_0 + dx)


class TrapezoidDisk2D(Fittable2DModel):
    """
    Two dimensional circular Trapezoid model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the trapezoid
    x_0 : float
        x position of the center of the trapezoid
    y_0 : float
        y position of the center of the trapezoid
    R_0 : float
        Radius of the constant part of the trapezoid.
    slope : float
        Slope of the tails of the trapezoid in x direction.

    See Also
    --------
    Disk2D, Box2D
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    R_0 = Parameter(default=1)
    slope = Parameter(default=1)

    @staticmethod
    def evaluate(x, y, amplitude, x_0, y_0, R_0, slope):
        """Two dimensional Trapezoid Disk model function"""

        r = np.sqrt((x - x_0) ** 2 + (y - y_0) ** 2)
        range_1 = r <= R_0
        range_2 = np.logical_and(r > R_0, r <= R_0 + amplitude / slope)
        val_1 = amplitude
        val_2 = amplitude + slope * (R_0 - r)
        return np.select([range_1, range_2], [val_1, val_2])

    @property
    def bounding_box(self):
        """
        Tuple defining the default ``bounding_box``.

        ``((y_low, y_high), (x_low, x_high))``
        """

        dr = self.R_0 + self.amplitude / self.slope

        return ((self.y_0 - dr, self.y_0 + dr),
                (self.x_0 - dr, self.x_0 + dr))


class MexicanHat1D(Fittable1DModel):
    """
    One dimensional Mexican Hat model.

    Parameters
    ----------
    amplitude : float
        Amplitude
    x_0 : float
        Position of the peak
    sigma : float
        Width of the Mexican hat

    See Also
    --------
    MexicanHat2D, Box1D, Gaussian1D, Trapezoid1D

    Notes
    -----
    Model formula:

    .. math::

        f(x) = {A \\left(1 - \\frac{\\left(x - x_{0}\\right)^{2}}{\\sigma^{2}}\\right)
        e^{- \\frac{\\left(x - x_{0}\\right)^{2}}{2 \\sigma^{2}}}}

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import MexicanHat1D

        plt.figure()
        s1 = MexicanHat1D()
        r = np.arange(-5, 5, .01)

        for factor in range(1, 4):
            s1.amplitude = factor
            s1.width = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -2, 4])
        plt.show()
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    sigma = Parameter(default=1)

    @staticmethod
    def evaluate(x, amplitude, x_0, sigma):
        """One dimensional Mexican Hat model function"""

        xx_ww = (x - x_0) ** 2 / (2 * sigma ** 2)
        return amplitude * (1 - 2 * xx_ww) * np.exp(-xx_ww)

    def bounding_box(self, factor=10.0):
        """Tuple defining the default ``bounding_box`` limits,
        ``(x_low, x_high)``.

        Parameters
        ----------
        factor : float
            The multiple of sigma used to define the limits.

        """
        x0 = self.x_0.value
        dx = factor * self.sigma

        return (x0 - dx, x0 + dx)


class MexicanHat2D(Fittable2DModel):
    """
    Two dimensional symmetric Mexican Hat model.

    Parameters
    ----------
    amplitude : float
        Amplitude
    x_0 : float
        x position of the peak
    y_0 : float
        y position of the peak
    sigma : float
        Width of the Mexican hat

    See Also
    --------
    MexicanHat1D, Gaussian2D

    Notes
    -----
    Model formula:

    .. math::

        f(x, y) = A \\left(1 - \\frac{\\left(x - x_{0}\\right)^{2}
        + \\left(y - y_{0}\\right)^{2}}{\\sigma^{2}}\\right)
        e^{\\frac{- \\left(x - x_{0}\\right)^{2}
        - \\left(y - y_{0}\\right)^{2}}{2 \\sigma^{2}}}
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    sigma = Parameter(default=1)

    @staticmethod
    def evaluate(x, y, amplitude, x_0, y_0, sigma):
        """Two dimensional Mexican Hat model function"""

        rr_ww = ((x - x_0) ** 2 + (y - y_0) ** 2) / (2 * sigma ** 2)
        return amplitude * (1 - rr_ww) * np.exp(- rr_ww)


class AiryDisk2D(Fittable2DModel):
    """
    Two dimensional Airy disk model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the Airy function.
    x_0 : float
        x position of the maximum of the Airy function.
    y_0 : float
        y position of the maximum of the Airy function.
    radius : float
        The radius of the Airy disk (radius of the first zero).

    See Also
    --------
    Box2D, TrapezoidDisk2D, Gaussian2D

    Notes
    -----
    Model formula:

        .. math:: f(r) = A \\left[\\frac{2 J_1(\\frac{\\pi r}{R/R_z})}{\\frac{\\pi r}{R/R_z}}\\right]^2

    Where :math:`J_1` is the first order Bessel function of the first
    kind, :math:`r` is radial distance from the maximum of the Airy
    function (:math:`r = \\sqrt{(x - x_0)^2 + (y - y_0)^2}`), :math:`R`
    is the input ``radius`` parameter, and :math:`R_z =
    1.2196698912665045`).

    For an optical system, the radius of the first zero represents the
    limiting angular resolution and is approximately 1.22 * lambda / D,
    where lambda is the wavelength of the light and D is the diameter of
    the aperture.

    See [1]_ for more details about the Airy disk.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Airy_disk
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    radius = Parameter(default=1)
    _rz = None
    _j1 = None

    @classmethod
    def evaluate(cls, x, y, amplitude, x_0, y_0, radius):
        """Two dimensional Airy model function"""

        if cls._rz is None:
            try:
                from scipy.special import j1, jn_zeros
                cls._rz = jn_zeros(1, 1)[0] / np.pi
                cls._j1 = j1
            except ValueError:
                raise ImportError('AiryDisk2D model requires scipy > 0.11.')

        r = np.sqrt((x - x_0) ** 2 + (y - y_0) ** 2) / (radius / cls._rz)
        # Since r can be zero, we have to take care to treat that case
        # separately so as not to raise a numpy warning
        z = np.ones(r.shape)
        rt = np.pi * r[r > 0]
        z[r > 0] = (2.0 * cls._j1(rt) / rt) ** 2
        z *= amplitude
        return z


class Moffat1D(Fittable1DModel):
    """
    One dimensional Moffat model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the model.
    x_0 : float
        x position of the maximum of the Moffat model.
    gamma : float
        Core width of the Moffat model.
    alpha : float
        Power index of the Moffat model.

    See Also
    --------
    Gaussian1D, Box1D

    Notes
    -----
    Model formula:

    .. math::

        f(x) = A \\left(1 + \\frac{\\left(x - x_{0}\\right)^{2}}{\\gamma^{2}}\\right)^{- \\alpha}

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        import matplotlib.pyplot as plt

        from astropy.modeling.models import Moffat1D

        plt.figure()
        s1 = Moffat1D()
        r = np.arange(-5, 5, .01)

        for factor in range(1, 4):
            s1.amplitude = factor
            s1.width = factor
            plt.plot(r, s1(r), color=str(0.25 * factor), lw=2)

        plt.axis([-5, 5, -1, 4])
        plt.show()
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    gamma = Parameter(default=1)
    alpha = Parameter(default=1)

    @staticmethod
    def evaluate(x, amplitude, x_0, gamma, alpha):
        """One dimensional Moffat model function"""

        return amplitude * (1 + ((x - x_0) / gamma) ** 2) ** (-alpha)

    @staticmethod
    def fit_deriv(x, amplitude, x_0, gamma, alpha):
        """One dimensional Moffat model derivative with respect to parameters"""

        d_A = (1 + (x - x_0) ** 2 / gamma ** 2) ** (-alpha)
        d_x_0 = (-amplitude * alpha * d_A * (-2 * x + 2 * x_0) /
                 (gamma ** 2 * d_A ** alpha))
        d_gamma = (2 * amplitude * alpha * d_A * (x - x_0) ** 2 /
                   (gamma ** 3 * d_A ** alpha))
        d_alpha = -amplitude * d_A * np.log(1 + (x - x_0) ** 2 / gamma ** 2)
        return [d_A, d_x_0, d_gamma, d_alpha]


class Moffat2D(Fittable2DModel):
    """
    Two dimensional Moffat model.

    Parameters
    ----------
    amplitude : float
        Amplitude of the model.
    x_0 : float
        x position of the maximum of the Moffat model.
    y_0 : float
        y position of the maximum of the Moffat model.
    gamma : float
        Core width of the Moffat model.
    alpha : float
        Power index of the Moffat model.

    See Also
    --------
    Gaussian2D, Box2D

    Notes
    -----
    Model formula:

    .. math::

        f(x, y) = A \\left(1 + \\frac{\\left(x - x_{0}\\right)^{2} +
        \\left(y - y_{0}\\right)^{2}}{\\gamma^{2}}\\right)^{- \\alpha}
    """

    amplitude = Parameter(default=1)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    gamma = Parameter(default=1)
    alpha = Parameter(default=1)

    @staticmethod
    def evaluate(x, y, amplitude, x_0, y_0, gamma, alpha):
        """Two dimensional Moffat model function"""

        rr_gg = ((x - x_0) ** 2 + (y - y_0) ** 2) / gamma ** 2
        return amplitude * (1 + rr_gg) ** (-alpha)

    @staticmethod
    def fit_deriv(x, y, amplitude, x_0, y_0, gamma, alpha):
        """Two dimensional Moffat model derivative with respect to parameters"""

        rr_gg = ((x - x_0) ** 2 + (y - y_0) ** 2) / gamma ** 2
        d_A = (1 + rr_gg) ** (-alpha)
        d_x_0 = (-amplitude * alpha * d_A * (-2 * x + 2 * x_0) /
                 (gamma ** 2 * (1 + rr_gg)))
        d_y_0 = (-amplitude * alpha * d_A * (-2 * y + 2 * y_0) /
                 (gamma ** 2 * (1 + rr_gg)))
        d_alpha = -amplitude * d_A * np.log(1 + rr_gg)
        d_gamma = 2 * amplitude * alpha * d_A * (rr_gg / (gamma * (1 + rr_gg)))
        return [d_A, d_x_0, d_y_0, d_gamma, d_alpha]


class Sersic2D(Fittable2DModel):
    r"""
    Two dimensional Sersic surface brightness profile.

    Parameters
    ----------
    amplitude : float
        Central surface brightness, within r_eff.
    r_eff : float
        Effective (half-light) radius
    n : float
        Sersic Index.
    x_0 : float, optional
        x position of the center.
    y_0 : float, optional
        y position of the center.
    ellip : float, optional
        Ellipticity.
    theta : float, optional
        Rotation angle in radians, counterclockwise from
        the positive x-axis.

    See Also
    --------
    Gaussian2D, Moffat2D

    Notes
    -----
    Model formula:

    .. math::

        I(x,y) = I(r) = I_e\exp\left\{-b_n\left[\left(\frac{r}{r_{e}}\right)^{(1/n)}-1\right]\right\}

    The constant :math:`b_n` is defined such that :math:`r_e` contains half the total
    luminosity, and can be solved for numerically.

    .. math::

        \Gamma(2n) = 2\gamma (b_n,2n)

    Examples
    --------
    .. plot::
        :include-source:

        import numpy as np
        from astropy.modeling.models import Sersic2D
        import matplotlib.pyplot as plt

        x,y = np.meshgrid(np.arange(100), np.arange(100))

        mod = Sersic2D(amplitude = 1, r_eff = 25, n=4, x_0=50, y_0=50,
                       ellip=.5, theta=-1)
        img = mod(x, y)
        log_img = np.log10(img)


        plt.figure()
        plt.imshow(log_img, origin='lower', interpolation='nearest',
                   vmin=-1, vmax=2)
        plt.xlabel('x')
        plt.ylabel('y')
        cbar = plt.colorbar()
        cbar.set_label('Log Brightness', rotation=270, labelpad=25)
        cbar.set_ticks([-1, 0, 1, 2], update_ticks=True)
        plt.show()

    References
    ----------
    .. [1] http://ned.ipac.caltech.edu/level5/March05/Graham/Graham2.html
    """

    amplitude = Parameter(default=1)
    r_eff = Parameter(default=1)
    n = Parameter(default=4)
    x_0 = Parameter(default=0)
    y_0 = Parameter(default=0)
    ellip = Parameter(default=0)
    theta = Parameter(default=0)
    _gammaincinv = None

    @classmethod
    def evaluate(cls, x, y, amplitude, r_eff, n, x_0, y_0, ellip, theta):
        """Two dimensional Sersic profile function."""

        if cls._gammaincinv is None:
            try:
                from scipy.special import gammaincinv
                cls._gammaincinv = gammaincinv
            except ValueError:
                raise ImportError('Sersic2D model requires scipy > 0.11.')

        bn = cls._gammaincinv(2. * n, 0.5)
        a, b = r_eff, (1 - ellip) * r_eff
        cos_theta, sin_theta = np.cos(theta), np.sin(theta)
        x_maj = (x - x_0) * cos_theta + (y - y_0) * sin_theta
        x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta
        z = np.sqrt((x_maj / a) ** 2 + (x_min / b) ** 2)

        return amplitude * np.exp(-bn * (z ** (1 / n) - 1))
