# coding=utf-8
# ------------------------------------
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# ------------------------------------

"""
FILE: sample_conversation_pii.py

DESCRIPTION:
    This sample demonstrates how to run a PII detection action over a conversation (sync).

USAGE:
    python sample_conversation_pii.py

REQUIRED ENV VARS (for AAD / DefaultAzureCredential):
    AZURE_CONVERSATIONS_ENDPOINT
    AZURE_CLIENT_ID
    AZURE_TENANT_ID
    AZURE_CLIENT_SECRET

NOTE:
    If you want to use AzureKeyCredential instead, set:
      - AZURE_CONVERSATIONS_ENDPOINT
      - AZURE_CONVERSATIONS_KEY
"""

# [START conversation_pii]
import os

from azure.identity import DefaultAzureCredential
from azure.ai.language.conversations import ConversationAnalysisClient
from azure.ai.language.conversations.models import (
    MultiLanguageConversationInput,
    TextConversation,
    TextConversationItem,
    ParticipantRole,
    AnalyzeConversationOperationInput,
    PiiOperationAction,
    ConversationPiiActionContent,
    AnalyzeConversationOperationResult,
    ConversationPiiOperationResult,
    InputWarning,
    ConversationError,
)


def sample_conversation_pii():
    # get settings
    endpoint = os.environ["AZURE_CONVERSATIONS_ENDPOINT"]

    credential = DefaultAzureCredential()

    entities_detected = []

    client = ConversationAnalysisClient(endpoint, credential=credential)

    # build input
    ml_input = MultiLanguageConversationInput(
        conversations=[
            TextConversation(
                id="1",
                language="en",
                conversation_items=[
                    TextConversationItem(
                        id="1",
                        participant_id="Agent_1",
                        role=ParticipantRole.AGENT,
                        text="Can you provide your name?",
                    ),
                    TextConversationItem(
                        id="2",
                        participant_id="Customer_1",
                        role=ParticipantRole.CUSTOMER,
                        text="Hi, my name is John Doe.",
                    ),
                    TextConversationItem(
                        id="3",
                        participant_id="Agent_1",
                        role=ParticipantRole.AGENT,
                        text="Thank you John, that has been updated in our system.",
                    ),
                ],
            )
        ]
    )

    pii_action = PiiOperationAction(
        action_content=ConversationPiiActionContent(),
        name="Conversation PII",
    )

    operation_input = AnalyzeConversationOperationInput(
        conversation_input=ml_input,
        actions=[pii_action],
    )

    # start long-running operation (sync)
    poller = client.begin_analyze_conversation_job(body=operation_input)

    # operation metadata
    print(f"Operation ID: {poller.details.get('operation_id')}")

    # wait for completion
    paged_actions = poller.result()

    # final-state metadata
    d = poller.details
    print(f"Job ID: {d.get('job_id')}")
    print(f"Status: {d.get('status')}")
    print(f"Created: {d.get('created_date_time')}")
    print(f"Last Updated: {d.get('last_updated_date_time')}")
    if d.get("expiration_date_time"):
        print(f"Expires: {d.get('expiration_date_time')}")
    if d.get("display_name"):
        print(f"Display Name: {d.get('display_name')}")

    # iterate results (sync pageable)
    for actions_page in paged_actions:
        print(
            f"Completed: {actions_page.completed}, "
            f"In Progress: {actions_page.in_progress}, "
            f"Failed: {actions_page.failed}, "
            f"Total: {actions_page.total}"
        )

        for action_result in actions_page.task_results or []:
            print(f"\nAction Name: {action_result.name}")
            print(f"Action Status: {action_result.status}")
            print(f"Kind: {action_result.kind}")

            if isinstance(action_result, ConversationPiiOperationResult):
                for conversation in action_result.results.conversations or []:
                    print(f"Conversation: #{conversation.id}")
                    print("Detected Entities:")

                    for item in conversation.conversation_items or []:
                        for entity in item.entities or []:
                            print(f"  Category: {entity.category}")
                            print(f"  Subcategory: {entity.subcategory}")
                            print(f"  Text: {entity.text}")
                            print(f"  Offset: {entity.offset}")
                            print(f"  Length: {entity.length}")
                            print(f"  Confidence score: {entity.confidence_score}\n")
                            entities_detected.append(entity)

                    if conversation.warnings:
                        print("Warnings:")
                        for warning in conversation.warnings:
                            if isinstance(warning, InputWarning):
                                print(f"  Code: {warning.code}")
                                print(f"  Message: {warning.message}")
                    print()
            else:
                print("  [No supported results to display for this action type]")

    # errors
    if d.get("errors"):
        print("\nErrors:")
        for err in d["errors"]:
            print(f"  Code: {err.code} - {err.message}")
# [END conversation_pii]


def main():
    sample_conversation_pii()


if __name__ == "__main__":
    main()
