# Copyright 2003-2008 by Leighton Pritchard.  All rights reserved.
# Revisions copyright 2008-2009 by Peter Cock.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
#
# Contact:       Leighton Pritchard, Scottish Crop Research Institute,
#                Invergowrie, Dundee, Scotland, DD2 5DA, UK
#                L.Pritchard@scri.ac.uk
################################################################################

""" LinearDrawer module

    Provides:

    o LinearDrawer -  Drawing object for linear diagrams

    For drawing capabilities, this module uses reportlab to draw and write
    the diagram:

    http://www.reportlab.com

    For dealing with biological information, the package expects BioPython
    objects:

    http://www.biopython.org
"""

# ReportLab imports
from __future__ import print_function

from reportlab.graphics.shapes import Drawing, Line, String, Group, Polygon
from reportlab.lib import colors

# GenomeDiagram imports
from ._AbstractDrawer import AbstractDrawer, draw_box, draw_arrow
from ._AbstractDrawer import draw_cut_corner_box, _stroke_and_fill_colors
from ._AbstractDrawer import intermediate_points, angle2trig
from ._FeatureSet import FeatureSet
from ._GraphSet import GraphSet

from math import ceil


class LinearDrawer(AbstractDrawer):
    """ LinearDrawer(AbstractDrawer)

        Inherits from:

        o AbstractDrawer

        Provides:

        Methods:

        o __init__(self, ...) Called on instantiation

        o set_page_size(self, pagesize, orientation)    Set the page size to the
                                                    passed size and orientation

        o set_margins(self, x, y, xl, xr, yt, yb)   Set the drawable area of the
                                                    page

        o set_bounds(self, start, end)  Set the bounds for the elements to be
                                        drawn

        o is_in_bounds(self, value)     Returns a boolean for whether the position
                                        is actually to be drawn

        o __len__(self)     Returns the length of sequence that will be drawn


        o draw(self)    Place the drawing elements on the diagram

        o init_fragments(self)  Calculate information
                                about sequence fragment locations on the drawing

        o set_track_heights(self)   Calculate information about the offset of
                                    each track from the fragment base

        o draw_test_tracks(self)    Add lines demarcating each track to the
                                    drawing

        o draw_track(self, track)   Return the contents of the passed track as
                                    drawing elements

        o draw_scale(self, track)   Return a scale for the passed track as
                                    drawing elements

        o draw_tick(self, tickpos, ctr, ticklen, track, draw_label) Return a
                                    tick line and possibly a label

        o draw_greytrack(self, track)   Return a grey background and superposed
                                        label for the passed track as drawing
                                        elements

        o draw_feature_set(self, set)   Return the features in the passed set as
                                        drawing elements

        o draw_feature(self, feature)   Return a single feature as drawing
                                        elements

        o get_feature_sigil(self, feature, x0, x1, fragment)    Return a single
                                        feature as its sigil in drawing elements

        o draw_graph_set(self, set)     Return the data in a set of graphs as
                                        drawing elements

        o draw_line_graph(self, graph)  Return the data in a graph as a line
                                        graph in drawing elements

        o draw_heat_graph(self, graph)  Return the data in a graph as a heat
                                        graph in drawing elements

        o draw_bar_graph(self, graph)   Return the data in a graph as a bar
                                        graph in drawing elements

        o canvas_location(self, base)   Return the fragment, and the offset from
                                        the left margin, of a passed position
                                        in the sequence, on the diagram.

        Attributes:

        o tracklines    Boolean for whether to draw lines delineating tracks

        o pagesize      Tuple describing the size of the page in pixels

        o x0            Float X co-ord for leftmost point of drawable area

        o xlim          Float X co-ord for rightmost point of drawable area

        o y0            Float Y co-ord for lowest point of drawable area

        o ylim          Float Y co-ord for topmost point of drawable area

        o pagewidth     Float pixel width of drawable area

        o pageheight    Float pixel height of drawable area

        o xcenter       Float X co-ord of center of drawable area

        o ycenter       Float Y co-ord of center of drawable area

        o start         Int, base to start drawing from

        o end           Int, base to stop drawing at

        o length        Int, size of sequence to be drawn

        o fragments     Int, number of fragments into which to divide the
                        drawn sequence

        o fragment_size Float (0->1) the proportion of the fragment height to
                        draw in

        o track_size    Float (0->1) the proportion of the track height to
                        draw in

        o drawing       Drawing canvas

        o drawn_tracks  List of ints denoting which tracks are to be drawn

        o current_track_level   Int denoting which track is currently being
                                drawn

        o fragment_height   Float total fragment height in pixels

        o fragment_bases    Int total fragment length in bases

        o fragment_lines    Dictionary of top and bottom y-coords of fragment,
                            keyed by fragment number

        o fragment_limits   Dictionary of start and end bases of each fragment,
                            keyed by fragment number

        o track_offsets     Dictionary of number of pixels that each track top,
                            center and bottom is offset from the base of a
                            fragment, keyed by track

        o cross_track_links List of tuples each with four entries (track A,
                            feature A, track B, feature B) to be linked.

    """
    def __init__(self, parent=None, pagesize='A3', orientation='landscape',
                 x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None,
                 start=None, end=None, tracklines=0, fragments=10,
                 fragment_size=0.9, track_size=0.75, cross_track_links=None):
        """ __init__(self, parent, pagesize='A3', orientation='landscape',
                     x=0.05, y=0.05, xl=None, xr=None, yt=None, yb=None,
                     start=None, end=None, tracklines=0, fragments=10,
                     fragment_size=0.9, track_size=0.75)

            o parent    Diagram object containing the data that the drawer
                        draws

            o pagesize  String describing the ISO size of the image, or a tuple
                        of pixels

            o orientation   String describing the required orientation of the
                            final drawing ('landscape' or 'portrait')

            o x         Float (0->1) describing the relative size of the X
                        margins to the page

            o y         Float (0->1) describing the relative size of the Y
                        margins to the page

            o xl        Float (0->1) describing the relative size of the left X
                        margin to the page (overrides x)

            o xl        Float (0->1) describing the relative size of the left X
                        margin to the page (overrides x)

            o xr        Float (0->1) describing the relative size of the right X
                        margin to the page (overrides x)

            o yt        Float (0->1) describing the relative size of the top Y
                        margin to the page (overrides y)

            o yb        Float (0->1) describing the relative size of the lower Y
                        margin to the page (overrides y)

            o start     Int, the position to begin drawing the diagram at

            o end       Int, the position to stop drawing the diagram at

            o tracklines    Boolean flag to show (or not) lines delineating tracks
                            on the diagram

            o fragments Int, the number of equal fragments into which the
                        sequence should be divided for drawing

            o fragment_size Float(0->1) The proportion of the available height
                            for the fragment that should be taken up in drawing

            o track_size    The proportion of the available track height that
                            should be taken up in drawing

            o cross_track_links List of tuples each with four entries (track A,
                                feature A, track B, feature B) to be linked.
        """
        # Use the superclass' instantiation method
        AbstractDrawer.__init__(self, parent, pagesize, orientation,
                                  x, y, xl, xr, yt, yb, start, end,
                                  tracklines, cross_track_links)

        # Useful measurements on the page
        self.fragments = fragments
        self.fragment_size = fragment_size
        self.track_size = track_size

    def draw(self):
        """ draw(self)

            Draw a linear diagram of the data in the parent Diagram object
        """
        # Instantiate the drawing canvas
        self.drawing = Drawing(self.pagesize[0], self.pagesize[1])

        feature_elements = []           # holds feature elements
        feature_labels = []             # holds feature labels
        greytrack_bgs = []              # holds track background
        greytrack_labels = []           # holds track foreground labels
        scale_axes = []                 # holds scale axes
        scale_labels = []               # holds scale axis labels

        # Get the tracks to be drawn
        self.drawn_tracks = self._parent.get_drawn_levels()

        # Set fragment and track sizes
        self.init_fragments()
        self.set_track_heights()

        # Go through each track in the parent (if it is to be drawn) one by
        # one and collate the data as drawing elements
        for track_level in self.drawn_tracks:  # only use tracks to be drawn
            self.current_track_level = track_level      # establish track level
            track = self._parent[track_level]           # get the track at that level
            gbgs, glabels = self.draw_greytrack(track)  # get greytrack elements
            greytrack_bgs.append(gbgs)
            greytrack_labels.append(glabels)
            features, flabels = self.draw_track(track)  # get feature and graph elements
            feature_elements.append(features)
            feature_labels.append(flabels)
            if track.scale:
                axes, slabels = self.draw_scale(track)      # get scale elements
                scale_axes.append(axes)
                scale_labels.append(slabels)

        feature_cross_links = []
        for cross_link_obj in self.cross_track_links:
            cross_link_elements = self.draw_cross_link(cross_link_obj)
            if cross_link_elements:
                feature_cross_links.append(cross_link_elements)

        # Groups listed in order of addition to page (from back to front)
        # Draw track backgrounds
        # Draw feature cross track links
        # Draw features and graphs
        # Draw scale axes
        # Draw scale labels
        # Draw feature labels
        # Draw track labels
        element_groups = [greytrack_bgs, feature_cross_links,
                          feature_elements, scale_axes,
                          scale_labels, feature_labels, greytrack_labels]
        for element_group in element_groups:
            for element_list in element_group:
                [self.drawing.add(element) for element in element_list]

        if self.tracklines:             # Draw test tracks over top of diagram
            self.draw_test_tracks()

    def init_fragments(self):
        """ init_fragments(self)

            Initialises useful values for calculating the positioning of
            diagram elements
        """
        # Set basic heights, lengths etc
        self.fragment_height = 1. * self.pageheight / self.fragments     # total fragment height in pixels
        self.fragment_bases = ceil(1. * self.length / self.fragments)    # fragment length in bases

        # Key fragment base and top lines by fragment number
        self.fragment_lines = {}    # Holds bottom and top line locations of fragments, keyed by fragment number
        fragment_crop = (1 - self.fragment_size) / 2    # No of pixels to crop the fragment
        fragy = self.ylim           # Holder for current absolute fragment base
        for fragment in range(self.fragments):
            fragtop = fragy - fragment_crop * self.fragment_height     # top - crop
            fragbtm = fragy - (1 - fragment_crop) * self.fragment_height  # bottom + crop
            self.fragment_lines[fragment] = (fragbtm, fragtop)
            fragy -= self.fragment_height                   # next fragment base

        # Key base starts and ends for each fragment by fragment number
        self.fragment_limits = {}   # Holds first and last base positions in a fragment
        fragment_step = self.fragment_bases  # bases per fragment
        fragment_count = 0
        # Add start and end positions for each fragment to dictionary
        for marker in range(int(self.start), int(self.end), int(fragment_step)):
            self.fragment_limits[fragment_count] = (marker, marker + fragment_step)
            fragment_count += 1

    def set_track_heights(self):
        """ set_track_heights(self)

            Since tracks may not be of identical heights, the bottom and top
            offsets of each track relative to the fragment top and bottom is
            stored in a dictionary - self.track_offsets, keyed by track number
        """
        bot_track = min(min(self.drawn_tracks), 1)
        top_track = max(self.drawn_tracks)     # The 'highest' track number to draw

        trackunit_sum = 0           # Total number of 'units' for the tracks
        trackunits = {}             # The start and end units for each track, keyed by track number
        heightholder = 0            # placeholder variable
        for track in range(bot_track, top_track + 1):  # for all track numbers to 'draw'
            try:
                trackheight = self._parent[track].height    # Get track height
            except Exception:  # TODO: IndexError?
                trackheight = 1                             # ...or default to 1
            trackunit_sum += trackheight    # increment total track unit height
            trackunits[track] = (heightholder, heightholder + trackheight)
            heightholder += trackheight     # move to next height
        trackunit_height = 1. * self.fragment_height * self.fragment_size / trackunit_sum

        # Calculate top and bottom offsets for each track, relative to fragment
        # base
        track_offsets = {}      # The offsets from fragment base for each track
        track_crop = trackunit_height * (1 - self.track_size) / 2.    # 'step back' in pixels
        assert track_crop >= 0
        for track in trackunits:
            top = trackunits[track][1] * trackunit_height - track_crop  # top offset
            btm = trackunits[track][0] * trackunit_height + track_crop  # bottom offset
            ctr = btm + (top - btm) / 2.                          # center offset
            track_offsets[track] = (btm, ctr, top)
        self.track_offsets = track_offsets

    def draw_test_tracks(self):
        """ draw_test_tracks(self)

            Draw red lines indicating the top and bottom of each fragment,
            and blue ones indicating tracks to be drawn.
        """
        # Add lines for each fragment
        for fbtm, ftop in self.fragment_lines.values():
            self.drawing.add(Line(self.x0, ftop, self.xlim, ftop,
                                  strokeColor=colors.red))  # top line
            self.drawing.add(Line(self.x0, fbtm, self.xlim, fbtm,
                                  strokeColor=colors.red))  # bottom line

            # Add track lines for this fragment - but only for drawn tracks
            for track in self.drawn_tracks:
                trackbtm = fbtm + self.track_offsets[track][0]
                trackctr = fbtm + self.track_offsets[track][1]
                tracktop = fbtm + self.track_offsets[track][2]
                self.drawing.add(Line(self.x0, tracktop, self.xlim, tracktop,
                                      strokeColor=colors.blue))  # top line
                self.drawing.add(Line(self.x0, trackctr, self.xlim, trackctr,
                                      strokeColor=colors.green))  # center line
                self.drawing.add(Line(self.x0, trackbtm, self.xlim, trackbtm,
                                      strokeColor=colors.blue))  # bottom line

    def draw_track(self, track):
        """ draw_track(self, track) -> ([element, element,...], [element, element,...])

            o track     Track object

            Returns a tuple (list of elements in the track, list of labels in
            the track)
        """
        track_elements = []     # Holds elements from features and graphs
        track_labels = []       # Holds labels from features and graphs

        # Distribution dictionary for dealing with different set types
        set_methods = {FeatureSet: self.draw_feature_set,
                       GraphSet: self.draw_graph_set
                       }

        for set in track.get_sets():        # Draw the feature or graph sets
            elements, labels = set_methods[set.__class__](set)
            track_elements += elements
            track_labels += labels
        return track_elements, track_labels

    def draw_tick(self, tickpos, ctr, ticklen, track, draw_label):
        """ draw_tick(self, tickpos, ctr, ticklen) -> (element, element)

            o tickpos   Int, position of the tick on the sequence

            o ctr       Float, Y co-ord of the center of the track

            o ticklen   How long to draw the tick

            o track     Track, the track the tick is drawn on

            o draw_label    Boolean, write the tick label?

            Returns a drawing element that is the tick on the scale
        """
        assert self.start <= tickpos and tickpos <= self.end, \
               "Tick at %i, but showing %i to %i" \
               % (tickpos, self.start, self.end)
        assert (track.start is None or track.start <= tickpos) and \
               (track.end is None or tickpos <= track.end), \
               "Tick at %i, but showing %r to %r for track" \
               % (tickpos, track.start, track.end)
        fragment, tickx = self.canvas_location(tickpos)  # Tick co-ordinates
        assert fragment >= 0, \
               "Fragment %i, tickpos %i" % (fragment, tickpos)
        tctr = ctr + self.fragment_lines[fragment][0]   # Center line of the track
        tickx += self.x0                # Tick X co-ord
        ticktop = tctr + ticklen        # Y co-ord of tick top
        tick = Line(tickx, tctr, tickx, ticktop, strokeColor=track.scale_color)
        if draw_label:  # Put tick position on as label
            if track.scale_format == 'SInt':
                if tickpos >= 1000000:
                    tickstring = str(tickpos // 1000000) + " Mbp"
                elif tickpos >= 1000:
                    tickstring = str(tickpos // 1000) + " Kbp"
                else:
                    tickstring = str(tickpos)
            else:
                tickstring = str(tickpos)
            label = String(0, 0, tickstring,  # Make label string
                   fontName=track.scale_font,
                   fontSize=track.scale_fontsize,
                   fillColor=track.scale_color)
            labelgroup = Group(label)
            rotation = angle2trig(track.scale_fontangle)
            labelgroup.transform = (rotation[0], rotation[1], rotation[2],
                                    rotation[3], tickx, ticktop)
        else:
            labelgroup = None
        return tick, labelgroup

    def draw_scale(self, track):
        """ draw_scale(self, track) -> ([element, element,...], [element, element,...])

            o track     Track object

            Returns a tuple of (list of elements in the scale, list of labels
            in the scale)
        """
        scale_elements = []     # Holds axes and ticks
        scale_labels = []       # Holds labels

        if not track.scale:     # No scale required, exit early
            return [], []

        # Get track location
        btm, ctr, top = self.track_offsets[self.current_track_level]
        trackheight = (top - ctr)

        # For each fragment, draw the scale for this track
        start, end = self._current_track_start_end()
        start_f, start_x = self.canvas_location(start)
        end_f, end_x = self.canvas_location(end)

        for fragment in range(start_f, end_f + 1):
            tbtm = btm + self.fragment_lines[fragment][0]
            tctr = ctr + self.fragment_lines[fragment][0]
            ttop = top + self.fragment_lines[fragment][0]
            # X-axis
            if fragment == start_f:
                x_left = start_x
            else:
                x_left = 0
            if fragment == end_f:
                x_right = end_x
                # Y-axis end marker
                scale_elements.append(Line(self.x0 + x_right, tbtm, self.x0 + x_right, ttop,
                                           strokeColor=track.scale_color))
            else:
                x_right = self.xlim - self.x0
            scale_elements.append(Line(self.x0 + x_left, tctr, self.x0 + x_right, tctr,
                                   strokeColor=track.scale_color))
            # Y-axis start marker
            scale_elements.append(Line(self.x0 + x_left, tbtm, self.x0 + x_left, ttop,
                                       strokeColor=track.scale_color))

        start, end = self._current_track_start_end()
        if track.scale_ticks:   # Ticks are required on the scale
            # Draw large ticks
            # I want the ticks to be consistently positioned relative to
            # the start of the sequence (position 0), not relative to the
            # current viewpoint (self.start and self.end)

            ticklen = track.scale_largeticks * trackheight
            tickiterval = int(track.scale_largetick_interval)
            # Note that we could just start the list of ticks using
            # range(0,self.end,tickinterval) and the filter out the
            # ones before self.start - but this seems wasteful.
            # Using tickiterval * (self.start//tickiterval) is a shortcut.
            for tickpos in range(tickiterval * (self.start // tickiterval),
                                 int(self.end), tickiterval):
                if tickpos <= start or end <= tickpos:
                    continue
                tick, label = self.draw_tick(tickpos, ctr, ticklen,
                                             track,
                                             track.scale_largetick_labels)
                scale_elements.append(tick)
                if label is not None:   # If there's a label, add it
                    scale_labels.append(label)
            # Draw small ticks
            ticklen = track.scale_smallticks * trackheight
            tickiterval = int(track.scale_smalltick_interval)
            for tickpos in range(tickiterval * (self.start // tickiterval),
                                 int(self.end), tickiterval):
                if tickpos <= start or end <= tickpos:
                    continue
                tick, label = self.draw_tick(tickpos, ctr, ticklen,
                                             track,
                                             track.scale_smalltick_labels)
                scale_elements.append(tick)
                if label is not None:   # If there's a label, add it
                    scale_labels.append(label)

        # Check to see if the track contains a graph - if it does, get the
        # minimum and maximum values, and put them on the scale Y-axis
        if track.axis_labels:
            for set in track.get_sets():            # Check all sets...
                if set.__class__ is GraphSet:     # ...for a graph set
                    graph_label_min = []
                    graph_label_mid = []
                    graph_label_max = []
                    for graph in set.get_graphs():
                        quartiles = graph.quartiles()
                        minval, maxval = quartiles[0], quartiles[4]
                        if graph.center is None:
                            midval = (maxval + minval) / 2.
                            graph_label_min.append("%.3f" % minval)
                            graph_label_max.append("%.3f" % maxval)
                        else:
                            diff = max((graph.center - minval),
                                       (maxval - graph.center))
                            minval = graph.center - diff
                            maxval = graph.center + diff
                            midval = graph.center
                            graph_label_mid.append("%.3f" % midval)
                            graph_label_min.append("%.3f" % minval)
                            graph_label_max.append("%.3f" % maxval)
                    for fragment in range(start_f, end_f + 1):  # Add to all used fragment axes
                        tbtm = btm + self.fragment_lines[fragment][0]
                        tctr = ctr + self.fragment_lines[fragment][0]
                        ttop = top + self.fragment_lines[fragment][0]
                        if fragment == start_f:
                            x_left = start_x
                        else:
                            x_left = 0
                        for val, pos in [(";".join(graph_label_min), tbtm),
                                         (";".join(graph_label_max), ttop),
                                         (";".join(graph_label_mid), tctr)]:
                            label = String(0, 0, val,
                                           fontName=track.scale_font,
                                           fontSize=track.scale_fontsize,
                                           fillColor=track.scale_color)
                            labelgroup = Group(label)
                            rotation = angle2trig(track.scale_fontangle)
                            labelgroup.transform = (rotation[0], rotation[1], rotation[2],
                                                    rotation[3], self.x0 + x_left, pos)
                            scale_labels.append(labelgroup)

        return scale_elements, scale_labels

    def draw_greytrack(self, track):
        """ draw_greytrack(self) -> ([element, element,...], [element, element,...])

            o track     Track object

            Put in a grey background to the current track in all fragments,
            if track specifies that we should
        """
        greytrack_bgs = []      # Holds grey track backgrounds
        greytrack_labels = []   # Holds grey foreground labels

        if not track.greytrack:  # No greytrack required, return early
            return [], []

        # Get track location
        btm, ctr, top = self.track_offsets[self.current_track_level]

        start, end = self._current_track_start_end()
        start_fragment, start_offset = self.canvas_location(start)
        end_fragment, end_offset = self.canvas_location(end)

        # Add greytrack to all fragments for this track
        for fragment in range(start_fragment, end_fragment + 1):
            tbtm = btm + self.fragment_lines[fragment][0]
            tctr = ctr + self.fragment_lines[fragment][0]
            ttop = top + self.fragment_lines[fragment][0]
            if fragment == start_fragment:
                x1 = self.x0 + start_offset
            else:
                x1 = self.x0
            if fragment == end_fragment:
                x2 = self.x0 + end_offset
            else:
                x2 = self.xlim
            box = draw_box((x1, tbtm), (x2, ttop),  # Grey track bg
                           colors.Color(0.96, 0.96, 0.96))       # is just a box
            greytrack_bgs.append(box)

            if track.greytrack_labels:  # If labels are required
                labelstep = (self.pagewidth) / track.greytrack_labels  # how far apart should they be?
                label = String(0, 0, track.name,    # label contents
                               fontName=track.greytrack_font,
                               fontSize=track.greytrack_fontsize,
                               fillColor=track.greytrack_fontcolor)
                # Create a new labelgroup at each position the label is required
                for x in range(int(self.x0), int(self.xlim), int(labelstep)):
                    if fragment == start_fragment and x < start_offset:
                        continue
                    if fragment == end_fragment and end_offset < x + label.getBounds()[2]:
                        continue
                    labelgroup = Group(label)
                    rotation = angle2trig(track.greytrack_font_rotation)
                    labelgroup.transform = (rotation[0], rotation[1], rotation[2],
                                            rotation[3], x, tbtm)
                    if not self.xlim - x <= labelstep:    # Don't overlap the end of the track
                        greytrack_labels.append(labelgroup)

        return greytrack_bgs, greytrack_labels

    def draw_feature_set(self, set):
        """ draw_feature_set(self, set) -> ([element, element,...], [element, element,...])

            o set       FeatureSet object

            Returns a tuple (list of elements describing features, list of
            labels for elements)
        """
        # print 'draw feature set'
        feature_elements = []   # Holds diagram elements belonging to the features
        label_elements = []     # Holds diagram elements belonging to feature labels

        # Collect all the elements for the feature set
        for feature in set.get_features():
            if self.is_in_bounds(feature.start) or self.is_in_bounds(feature.end):
                features, labels = self.draw_feature(feature)   # get elements and labels
                feature_elements += features
                label_elements += labels

        return feature_elements, label_elements

    def draw_feature(self, feature):
        """ draw_feature(self, feature, parent_feature=None) -> ([element, element,...], [element, element,...])

            o feature           Feature containing location info

            Returns tuple of (list of elements describing single feature, list
            of labels for those elements)
        """
        if feature.hide:        # Feature hidden, don't draw it...
            return [], []

        feature_elements = []   # Holds diagram elements belonging to the feature
        label_elements = []     # Holds labels belonging to the feature

        start, end = self._current_track_start_end()
        # A single feature may be split into subfeatures, so loop over them
        for locstart, locend in feature.locations:
            if locend < start:
                continue
            locstart = max(locstart, start)
            if end < locstart:
                continue
            locend = min(locend, end)
            feature_boxes = self.draw_feature_location(feature, locstart, locend)
            for box, label in feature_boxes:
                feature_elements.append(box)
                if label is not None:
                    label_elements.append(label)

        return feature_elements, label_elements

    def draw_feature_location(self, feature, locstart, locend):
        feature_boxes = []
        # Get start and end positions for feature/subfeatures
        start_fragment, start_offset = self.canvas_location(locstart)
        end_fragment, end_offset = self.canvas_location(locend)
        # print "start_fragment, start_offset", start_fragment, start_offset
        # print "end_fragment, end_offset", end_fragment, end_offset
        # print "start, end", locstart, locend

        # Note that there is a strange situation where a feature may be in
        # several parts, and one or more of those parts may end up being
        # drawn on a non-existent fragment.  So we check that the start and
        # end fragments do actually exist in terms of the drawing
        allowed_fragments = list(self.fragment_limits.keys())
        if start_fragment in allowed_fragments and end_fragment in allowed_fragments:
            # print feature.name, feature.start, feature.end, start_offset, end_offset
            if start_fragment == end_fragment:  # Feature is found on one fragment
                feature_box, label = self.get_feature_sigil(feature, start_offset,
                                                            end_offset, start_fragment)
                feature_boxes.append((feature_box, label))
                # feature_elements.append(feature_box)
                # if label is not None:   # There is a label for the feature
                #    label_elements.append(label)
            else:  # Feature is split over two or more fragments
                fragment = start_fragment
                start = start_offset
                # The bit that runs up to the end of the first fragment,
                # and any bits that subsequently span whole fragments
                while self.fragment_limits[fragment][1] < locend:
                    # print fragment, self.fragment_limits[fragment][1], locend
                    feature_box, label = self.get_feature_sigil(feature, start,
                                                                self.pagewidth,
                                                                fragment)

                    fragment += 1   # move to next fragment
                    start = 0       # start next sigil from start of fragment
                    feature_boxes.append((feature_box, label))
                    # feature_elements.append(feature_box)
                    # if label is not None:   # There's a label for the feature
                    #    label_elements.append(label)
                # The last bit of the feature
                # print locend, self.end, fragment
                # print self.fragment_bases, self.length
                feature_box, label = self.get_feature_sigil(feature, 0,
                                                            end_offset, fragment)
                feature_boxes.append((feature_box, label))
        # if locstart > locend:
        #    print locstart, locend, feature.strand, feature_boxes, feature.name
        return feature_boxes

    def draw_cross_link(self, cross_link):
        startA = cross_link.startA
        startB = cross_link.startB
        endA = cross_link.endA
        endB = cross_link.endB

        if not self.is_in_bounds(startA) \
        and not self.is_in_bounds(endA):
            return None
        if not self.is_in_bounds(startB) \
        and not self.is_in_bounds(endB):
            return None

        if startA < self.start:
            startA = self.start
        if startB < self.start:
            startB = self.start
        if self.end < endA:
            endA = self.end
        if self.end < endB:
            endB = self.end

        trackobjA = cross_link._trackA(list(self._parent.tracks.values()))
        trackobjB = cross_link._trackB(list(self._parent.tracks.values()))
        assert trackobjA is not None
        assert trackobjB is not None
        if trackobjA == trackobjB:
            raise NotImplementedError()

        if trackobjA.start is not None:
            if endA < trackobjA.start:
                return
            startA = max(startA, trackobjA.start)
        if trackobjA.end is not None:
            if trackobjA.end < startA:
                return
            endA = min(endA, trackobjA.end)
        if trackobjB.start is not None:
            if endB < trackobjB.start:
                return
            startB = max(startB, trackobjB.start)
        if trackobjB.end is not None:
            if trackobjB.end < startB:
                return
            endB = min(endB, trackobjB.end)

        for track_level in self._parent.get_drawn_levels():
            track = self._parent[track_level]
            if track == trackobjA:
                trackA = track_level
            if track == trackobjB:
                trackB = track_level
        if trackA == trackB:
            raise NotImplementedError()

        strokecolor, fillcolor = _stroke_and_fill_colors(cross_link.color, cross_link.border)

        allowed_fragments = list(self.fragment_limits.keys())

        start_fragmentA, start_offsetA = self.canvas_location(startA)
        end_fragmentA, end_offsetA = self.canvas_location(endA)
        if start_fragmentA not in allowed_fragments \
        or end_fragmentA not in allowed_fragments:
            return

        start_fragmentB, start_offsetB = self.canvas_location(startB)
        end_fragmentB, end_offsetB = self.canvas_location(endB)
        if start_fragmentB not in allowed_fragments \
        or end_fragmentB not in allowed_fragments:
            return

        # TODO - Better drawing of flips when split between fragments

        answer = []
        for fragment in range(min(start_fragmentA, start_fragmentB),
                              max(end_fragmentA, end_fragmentB) + 1):
            btmA, ctrA, topA = self.track_offsets[trackA]
            btmA += self.fragment_lines[fragment][0]
            ctrA += self.fragment_lines[fragment][0]
            topA += self.fragment_lines[fragment][0]

            btmB, ctrB, topB = self.track_offsets[trackB]
            btmB += self.fragment_lines[fragment][0]
            ctrB += self.fragment_lines[fragment][0]
            topB += self.fragment_lines[fragment][0]

            if self.fragment_limits[fragment][1] < endA:
                xAe = self.x0 + self.pagewidth
                crop_rightA = True
            else:
                xAe = self.x0 + end_offsetA
                crop_rightA = False
            if self.fragment_limits[fragment][1] < endB:
                xBe = self.x0 + self.pagewidth
                crop_rightB = True
            else:
                xBe = self.x0 + end_offsetB
                crop_rightB = False

            if fragment < start_fragmentA:
                xAs = self.x0 + self.pagewidth
                xAe = xAs
                crop_leftA = False
            elif fragment == start_fragmentA:
                xAs = self.x0 + start_offsetA
                crop_leftA = False
            else:
                xAs = self.x0
                crop_leftA = True

            if fragment < start_fragmentB:
                xBs = self.x0 + self.pagewidth
                xBe = xBs
                crop_leftB = False
            elif fragment == start_fragmentB:
                xBs = self.x0 + start_offsetB
                crop_leftB = False
            else:
                xBs = self.x0
                crop_leftB = True

            if ctrA < ctrB:
                yA = topA
                yB = btmB
            else:
                yA = btmA
                yB = topB

            if fragment < start_fragmentB or end_fragmentB < fragment:
                if cross_link.flip:
                    # Just draw A as a triangle to left/right
                    if fragment < start_fragmentB:
                        extra = [self.x0 + self.pagewidth, 0.5 * (yA + yB)]
                    else:
                        extra = [self.x0, 0.5 * (yA + yB)]
                else:
                    if fragment < start_fragmentB:
                        extra = [self.x0 + self.pagewidth, 0.7 * yA + 0.3 * yB,
                                 self.x0 + self.pagewidth, 0.3 * yA + 0.7 * yB]
                    else:
                        extra = [self.x0, 0.3 * yA + 0.7 * yB,
                                 self.x0, 0.7 * yA + 0.3 * yB]
                answer.append(Polygon([xAs, yA, xAe, yA] + extra,
                               strokeColor=strokecolor,
                               fillColor=fillcolor,
                               # default is mitre/miter which can stick out too much:
                               strokeLineJoin=1,  # 1=round
                               strokewidth=0))
            elif fragment < start_fragmentA or end_fragmentA < fragment:
                if cross_link.flip:
                    # Just draw B as a triangle to left
                    if fragment < start_fragmentA:
                        extra = [self.x0 + self.pagewidth, 0.5 * (yA + yB)]
                    else:
                        extra = [self.x0, 0.5 * (yA + yB)]
                else:
                    if fragment < start_fragmentA:
                        extra = [self.x0 + self.pagewidth, 0.3 * yA + 0.7 * yB,
                                 self.x0 + self.pagewidth, 0.7 * yA + 0.3 * yB]
                    else:
                        extra = [self.x0, 0.7 * yA + 0.3 * yB,
                                 self.x0, 0.3 * yA + 0.7 * yB]
                answer.append(Polygon([xBs, yB, xBe, yB] + extra,
                               strokeColor=strokecolor,
                               fillColor=fillcolor,
                               # default is mitre/miter which can stick out too much:
                               strokeLineJoin=1,  # 1=round
                               strokewidth=0))
            elif cross_link.flip and ((crop_leftA and not crop_rightA) or
                                    (crop_leftB and not crop_rightB)):
                # On left end of fragment... force "crossing" to margin
                answer.append(Polygon([xAs, yA, xAe, yA,
                                       self.x0, 0.5 * (yA + yB),
                                       xBe, yB, xBs, yB],
                               strokeColor=strokecolor,
                               fillColor=fillcolor,
                               # default is mitre/miter which can stick out too much:
                               strokeLineJoin=1,  # 1=round
                               strokewidth=0))
            elif cross_link.flip and ((crop_rightA and not crop_leftA) or
                                      (crop_rightB and not crop_leftB)):
                # On right end... force "crossing" to margin
                answer.append(Polygon([xAs, yA, xAe, yA,
                                       xBe, yB, xBs, yB,
                                       self.x0 + self.pagewidth, 0.5 * (yA + yB)],
                               strokeColor=strokecolor,
                               fillColor=fillcolor,
                               # default is mitre/miter which can stick out too much:
                               strokeLineJoin=1,  # 1=round
                               strokewidth=0))
            elif cross_link.flip:
                answer.append(Polygon([xAs, yA, xAe, yA, xBs, yB, xBe, yB],
                               strokeColor=strokecolor,
                               fillColor=fillcolor,
                               # default is mitre/miter which can stick out too much:
                               strokeLineJoin=1,  # 1=round
                               strokewidth=0))
            else:
                answer.append(Polygon([xAs, yA, xAe, yA, xBe, yB, xBs, yB],
                               strokeColor=strokecolor,
                               fillColor=fillcolor,
                               # default is mitre/miter which can stick out too much:
                               strokeLineJoin=1,  # 1=round
                               strokewidth=0))
        return answer

    def get_feature_sigil(self, feature, x0, x1, fragment, **kwargs):
        """ get_feature_sigil(self, feature, x0, x1, fragment) -> (element, element, element)

            o feature       Feature object

            o x0            Start X co-ordinate on diagram

            o x1            End X co-ordinate on diagram

            o fragment      The fragment on which the feature appears

            Returns a drawable indicator of the feature, and any required label
            for it
        """
        # Establish co-ordinates for drawing
        x0, x1 = self.x0 + x0, self.x0 + x1
        btm, ctr, top = self.track_offsets[self.current_track_level]
        try:
            btm += self.fragment_lines[fragment][0]
            ctr += self.fragment_lines[fragment][0]
            top += self.fragment_lines[fragment][0]
        except:     # Only called if the method screws up big time
            print("We've got a screw-up")
            print("%s %s" % (self.start, self.end))
            print(self.fragment_bases)
            print("%r %r" % (x0, x1))
            for locstart, locend in feature.locations:
                print(self.canvas_location(locstart))
                print(self.canvas_location(locend))
            print('FEATURE\n%s' % feature)
            raise

        # Distribution dictionary for various ways of drawing the feature
        draw_methods = {'BOX': self._draw_sigil_box,
                        'ARROW': self._draw_sigil_arrow,
                        'BIGARROW': self._draw_sigil_big_arrow,
                        'OCTO': self._draw_sigil_octo,
                        'JAGGY': self._draw_sigil_jaggy,
                        }

        method = draw_methods[feature.sigil]
        kwargs['head_length_ratio'] = feature.arrowhead_length
        kwargs['shaft_height_ratio'] = feature.arrowshaft_height

        # Support for clickable links... needs ReportLab 2.4 or later
        # which added support for links in SVG output.
        if hasattr(feature, "url"):
            kwargs["hrefURL"] = feature.url
            kwargs["hrefTitle"] = feature.name

        # Get sigil for the feature, give it the bounding box straddling
        # the axis (it decides strand specific placement)
        sigil = method(btm, ctr, top, x0, x1, strand=feature.strand,
                       color=feature.color, border=feature.border,
                       **kwargs)

        if feature.label_strand:
            strand = feature.label_strand
        else:
            strand = feature.strand
        if feature.label:   # Feature requires a label
            label = String(0, 0, feature.name,
                           fontName=feature.label_font,
                           fontSize=feature.label_size,
                           fillColor=feature.label_color)
            labelgroup = Group(label)
            # Feature is on top, or covers both strands (location affects
            # the height and rotation of the label)
            if strand != -1:
                rotation = angle2trig(feature.label_angle)
                if feature.label_position in ('end', "3'", 'right'):
                    pos = x1
                elif feature.label_position in ('middle', 'center', 'centre'):
                    pos = (x1 + x0) / 2.
                else:
                    # Default to start, i.e. 'start', "5'", 'left'
                    pos = x0
                labelgroup.transform = (rotation[0], rotation[1], rotation[2],
                                        rotation[3], pos, top)
            else:   # Feature on bottom strand
                rotation = angle2trig(feature.label_angle + 180)
                if feature.label_position in ('end', "3'", 'right'):
                    pos = x0
                elif feature.label_position in ('middle', 'center', 'centre'):
                    pos = (x1 + x0) / 2.
                else:
                    # Default to start, i.e. 'start', "5'", 'left'
                    pos = x1
                labelgroup.transform = (rotation[0], rotation[1], rotation[2],
                                        rotation[3], pos, btm)
        else:
            labelgroup = None
        return sigil, labelgroup

    def draw_graph_set(self, set):
        """ draw_graph_set(self, set) -> ([element, element,...], [element, element,...])

            o set       GraphSet object

            Returns tuple (list of graph elements, list of graph labels)
        """
        # print 'draw graph set'
        elements = []   # Holds graph elements

        # Distribution dictionary for how to draw the graph
        style_methods = {'line': self.draw_line_graph,
                         'heat': self.draw_heat_graph,
                         'bar': self.draw_bar_graph
                         }

        for graph in set.get_graphs():
            elements += style_methods[graph.style](graph)

        return elements, []

    def draw_line_graph(self, graph):
        """ draw_line_graph(self, graph) -> [element, element,...]

            o graph     Graph object

            Returns a line graph as a list of drawable elements
        """
        # print '\tdraw_line_graph'
        line_elements = []                  # Holds drawable elements

        # Get graph data
        data_quartiles = graph.quartiles()
        minval, maxval = data_quartiles[0], data_quartiles[4]
        btm, ctr, top = self.track_offsets[self.current_track_level]
        trackheight = 0.5 * (top - btm)
        datarange = maxval - minval
        if datarange == 0:
            datarange = trackheight

        start, end = self._current_track_start_end()
        data = graph[start:end]

        # midval is the value at which the x-axis is plotted, and is the
        # central ring in the track
        if graph.center is None:
            midval = (maxval + minval) / 2.
        else:
            midval = graph.center
        # Whichever is the greatest difference: max-midval or min-midval, is
        # taken to specify the number of pixel units resolved along the
        # y-axis
        resolution = max((midval - minval), (maxval - midval))

        # Start from first data point
        pos, val = data[0]
        lastfrag, lastx = self.canvas_location(pos)
        lastx += self.x0        # Start xy co-ords
        lasty = trackheight * (val - midval) / resolution + \
                self.fragment_lines[lastfrag][0] + ctr
        lastval = val
        # Add a series of lines linking consecutive data points
        for pos, val in data:
            frag, x = self.canvas_location(pos)
            x += self.x0        # next xy co-ords
            y = trackheight * (val - midval) / resolution + \
                self.fragment_lines[frag][0] + ctr
            if frag == lastfrag:    # Points on the same fragment: draw the line
                line_elements.append(Line(lastx, lasty, x, y,
                                          strokeColor=graph.poscolor,
                                          strokeWidth=graph.linewidth))
            else:   # Points not on the same fragment, so interpolate
                tempy = trackheight * (val - midval) / resolution + \
                        self.fragment_lines[lastfrag][0] + ctr
                line_elements.append(Line(lastx, lasty, self.xlim, tempy,
                                          strokeColor=graph.poscolor,
                                          strokeWidth=graph.linewidth))
                tempy = trackheight * (val - midval) / resolution + \
                        self.fragment_lines[frag][0] + ctr
                line_elements.append(Line(self.x0, tempy, x, y,
                                          strokeColor=graph.poscolor,
                                          strokeWidth=graph.linewidth))
            lastfrag, lastx, lasty, lastval = frag, x, y, val

        return line_elements

    def draw_heat_graph(self, graph):
        """ draw_heat_graph(self, graph) -> [element, element,...]

            o graph     Graph object

            Returns a list of drawable elements for the heat graph
        """
        # print '\tdraw_heat_graph'
        # At each point contained in the graph data, we draw a box that is the
        # full height of the track, extending from the midpoint between the
        # previous and current data points to the midpoint between the current
        # and next data points
        heat_elements = []  # Holds drawable elements for the graph

        # Get graph data and information
        data_quartiles = graph.quartiles()
        minval, maxval = data_quartiles[0], data_quartiles[4]
        midval = (maxval + minval) / 2.    # mid is the value at the X-axis
        btm, ctr, top = self.track_offsets[self.current_track_level]
        trackheight = (top - btm)

        start, end = self._current_track_start_end()
        data = intermediate_points(start, end, graph[start:end])

        if not data:
            return []

        # Create elements on the graph, indicating a large positive value by
        # the graph's poscolor, and a large negative value by the graph's
        # negcolor attributes
        for pos0, pos1, val in data:
            # assert start <= pos0 <= pos1 <= end
            fragment0, x0 = self.canvas_location(pos0)
            fragment1, x1 = self.canvas_location(pos1)
            x0, x1 = self.x0 + x0, self.x0 + x1     # account for margin
            # print 'x1 before:', x1

            # Calculate the heat color, based on the differential between
            # the value and the median value
            heat = colors.linearlyInterpolatedColor(graph.poscolor,
                                                    graph.negcolor,
                                                    maxval, minval, val)

            # Draw heat box
            if fragment0 == fragment1:  # Box is contiguous on one fragment
                if pos1 >= self.fragment_limits[fragment0][1]:
                    x1 = self.xlim
                ttop = top + self.fragment_lines[fragment0][0]
                tbtm = btm + self.fragment_lines[fragment0][0]
                # print 'equal', pos0, pos1, val
                # print pos0, pos1, fragment0, fragment1
                heat_elements.append(draw_box((x0, tbtm), (x1, ttop),
                                              color=heat, border=None))
            else:   # box is split over two or more fragments
                # if pos0 >= self.fragment_limits[fragment0][0]:
                #    fragment0 += 1
                fragment = fragment0
                start_x = x0
                while self.fragment_limits[fragment][1] <= pos1:
                    # print pos0, self.fragment_limits[fragment][1], pos1
                    ttop = top + self.fragment_lines[fragment][0]
                    tbtm = btm + self.fragment_lines[fragment][0]
                    heat_elements.append(draw_box((start_x, tbtm),
                                                  (self.xlim, ttop),
                                                  color=heat,
                                                  border=None))
                    fragment += 1
                    start_x = self.x0
                ttop = top + self.fragment_lines[fragment][0]
                tbtm = btm + self.fragment_lines[fragment][0]
                # Add the last part of the bar
                # print 'x1 after:', x1, '\n'
                heat_elements.append(draw_box((self.x0, tbtm), (x1, ttop),
                                              color=heat, border=None))

        return heat_elements

    def draw_bar_graph(self, graph):
        """ draw_bar_graph(self, graph) -> [element, element,...]

            o graph     Graph object

            Returns a list of drawable elements for a bar graph of the passed
            Graph object
        """
        # print '\tdraw_bar_graph'
        # At each point contained in the graph data, we draw a vertical bar
        # from the track center to the height of the datapoint value (positive
        # values go up in one color, negative go down in the alternative
        # color).
        bar_elements = []   # Holds drawable elements for the graph

        # Set the number of pixels per unit for the data
        data_quartiles = graph.quartiles()
        minval, maxval = data_quartiles[0], data_quartiles[4]
        btm, ctr, top = self.track_offsets[self.current_track_level]
        trackheight = 0.5 * (top - btm)
        datarange = maxval - minval
        if datarange == 0:
            datarange = trackheight
        data = graph[self.start:self.end]
        # midval is the value at which the x-axis is plotted, and is the
        # central ring in the track
        if graph.center is None:
            midval = (maxval + minval) / 2.
        else:
            midval = graph.center

        # Convert data into 'binned' blocks, covering half the distance to the
        # next data point on either side, accounting for the ends of fragments
        # and tracks
        start, end = self._current_track_start_end()
        data = intermediate_points(start, end, graph[start:end])

        if not data:
            return []

        # Whichever is the greatest difference: max-midval or min-midval, is
        # taken to specify the number of pixel units resolved along the
        # y-axis
        resolution = max((midval - minval), (maxval - midval))
        if resolution == 0:
            resolution = trackheight

        # Create elements for the bar graph based on newdata
        for pos0, pos1, val in data:
            fragment0, x0 = self.canvas_location(pos0)
            fragment1, x1 = self.canvas_location(pos1)
            x0, x1 = self.x0 + x0, self.x0 + x1     # account for margin
            barval = trackheight * (val - midval) / resolution
            if barval >= 0:  # Different colors for bars that extend above...
                barcolor = graph.poscolor
            else:           # ...or below the axis
                barcolor = graph.negcolor

            # Draw bar
            if fragment0 == fragment1:  # Box is contiguous
                if pos1 >= self.fragment_limits[fragment0][1]:
                    x1 = self.xlim
                tctr = ctr + self.fragment_lines[fragment0][0]
                barval += tctr
                bar_elements.append(draw_box((x0, tctr), (x1, barval),
                                             color=barcolor))
            else:   # Box is split over two or more fragments
                fragment = fragment0
                # if pos0 >= self.fragment_limits[fragment0][0]:
                #    fragment += 1
                start = x0
                while self.fragment_limits[fragment][1] < pos1:
                    tctr = ctr + self.fragment_lines[fragment][0]
                    thisbarval = barval + tctr
                    bar_elements.append(draw_box((start, tctr),
                                                 (self.xlim, thisbarval),
                                                 color=barcolor))
                    fragment += 1
                    start = self.x0
                tctr = ctr + self.fragment_lines[fragment1][0]
                barval += tctr
                # Add the last part of the bar
                bar_elements.append(draw_box((self.x0, tctr), (x1, barval),
                                             color=barcolor))

        return bar_elements

    def canvas_location(self, base):
        """ canvas_location(self, base) -> (int, float)

            o base      The base number on the genome sequence

            Returns the x-coordinate and fragment number of a base on the
            genome sequence, in the context of the current drawing setup
        """
        base = int(base - self.start)   # number of bases we are from the start
        fragment = int(base / self.fragment_bases)
        if fragment < 1:    # First fragment
            base_offset = base
            fragment = 0
        elif fragment >= self.fragments:
            fragment = self.fragments - 1
            base_offset = self.fragment_bases
        else:               # Calculate number of bases from start of fragment
            base_offset = base % self.fragment_bases
        assert fragment < self.fragments, (base, self.start, self.end, self.length, self.fragment_bases)
        # Calculate number of pixels from start of fragment
        x_offset = 1. * self.pagewidth * base_offset / self.fragment_bases
        return fragment, x_offset

    def _draw_sigil_box(self, bottom, center, top, x1, x2, strand, **kwargs):
        """Draw BOX sigil."""
        if strand == 1:
            y1 = center
            y2 = top
        elif strand == -1:
            y1 = bottom
            y2 = center
        else:
            y1 = bottom
            y2 = top
        return draw_box((x1, y1), (x2, y2), **kwargs)

    def _draw_sigil_octo(self, bottom, center, top, x1, x2, strand, **kwargs):
        """Draw OCTO sigil, a box with the corners cut off."""
        if strand == 1:
            y1 = center
            y2 = top
        elif strand == -1:
            y1 = bottom
            y2 = center
        else:
            y1 = bottom
            y2 = top
        return draw_cut_corner_box((x1, y1), (x2, y2), **kwargs)

    def _draw_sigil_jaggy(self, bottom, center, top, x1, x2, strand,
                          color, border=None, **kwargs):
        """Draw JAGGY sigil.

        Although we may in future expose the head/tail jaggy lengths, for now
        both the left and right edges are drawn jagged.
        """
        if strand == 1:
            y1 = center
            y2 = top
            teeth = 2
        elif strand == -1:
            y1 = bottom
            y2 = center
            teeth = 2
        else:
            y1 = bottom
            y2 = top
            teeth = 4

        xmin = min(x1, x2)
        xmax = max(x1, x2)
        height = y2 - y1
        boxwidth = x2 - x1
        tooth_length = min(height / teeth, boxwidth * 0.5)

        headlength = tooth_length
        taillength = tooth_length

        strokecolor, color = _stroke_and_fill_colors(color, border)

        points = []
        for i in range(teeth):
            points.extend((xmin, y1 + i * height / teeth,
                           xmin + taillength, y1 + (i + 1) * height / teeth))
        for i in range(teeth):
            points.extend((xmax, y1 + (teeth - i) * height / teeth,
                           xmax - headlength, y1 + (teeth - i - 1) * height / teeth))

        return Polygon(points,
                       strokeColor=strokecolor,
                       strokeWidth=1,
                       strokeLineJoin=1,  # 1=round
                       fillColor=color,
                       **kwargs)

    def _draw_sigil_arrow(self, bottom, center, top, x1, x2, strand, **kwargs):
        """Draw ARROW sigil."""
        if strand == 1:
            y1 = center
            y2 = top
            orientation = "right"
        elif strand == -1:
            y1 = bottom
            y2 = center
            orientation = "left"
        else:
            y1 = bottom
            y2 = top
            orientation = "right"  # backward compatibility
        return draw_arrow((x1, y1), (x2, y2), orientation=orientation, **kwargs)

    def _draw_sigil_big_arrow(self, bottom, center, top, x1, x2, strand, **kwargs):
        """Draw BIGARROW sigil, like ARROW but straddles the axis."""
        if strand == -1:
            orientation = "left"
        else:
            orientation = "right"
        return draw_arrow((x1, bottom), (x2, top), orientation=orientation, **kwargs)
