# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

# coding=utf-8
"""Tests for NaiveBayes module."""

import copy
import unittest

from Bio import NaiveBayes

# Importing NaiveBayes will itself raise MissingPythonDependencyError
# if NumPy is unavailable.
import numpy

try:
    hash(numpy.float64(123.456))
except TypeError:
    # Due to a bug in NumPy 1.12.1, this is unhashable under
    # PyPy3.5 v5.7 beta - it has been fixed in NumPy
    from Bio import MissingPythonDependencyError

    raise MissingPythonDependencyError(
        "Please update NumPy if you want to use Bio.NaiveBayes "
        "(under this version numpy.float64 is unhashable)."
    ) from None
del numpy


class CarTest(unittest.TestCase):
    def test_car_data(self):
        """Simple example using car data."""
        # Car data from example 'Naive Bayes Classifier example'
        # by Eric Meisner November 22, 2003
        # http://www.inf.u-szeged.hu/~ormandi/teaching/mi2/02-naiveBayes-example.pdf
        xcar = [
            ["Red", "Sports", "Domestic"],
            ["Red", "Sports", "Domestic"],
            ["Red", "Sports", "Domestic"],
            ["Yellow", "Sports", "Domestic"],
            ["Yellow", "Sports", "Imported"],
            ["Yellow", "SUV", "Imported"],
            ["Yellow", "SUV", "Imported"],
            ["Yellow", "SUV", "Domestic"],
            ["Red", "SUV", "Imported"],
            ["Red", "Sports", "Imported"],
        ]

        ycar = [
            "Yes",
            "No",
            "Yes",
            "No",
            "Yes",
            "No",
            "Yes",
            "No",
            "No",
            "Yes",
        ]

        carmodel = NaiveBayes.train(xcar, ycar)
        self.assertEqual(
            "Yes", NaiveBayes.classify(carmodel, ["Red", "Sports", "Domestic"])
        )
        self.assertEqual(
            "No", NaiveBayes.classify(carmodel, ["Red", "SUV", "Domestic"])
        )


class NaiveBayesTest(unittest.TestCase):
    def setUp(self):
        # Using example from https://en.wikipedia.org/wiki/Naive_Bayes_classifier
        # height (feet), weight (lbs), foot size (inches)
        self.xs = [
            [6, 180, 12],
            [5.92, 190, 11],
            [5.58, 170, 12],
            [5.92, 165, 10],
            [5, 100, 6],
            [5.5, 150, 8],
            [5.42, 130, 7],
            [5.75, 150, 9],
        ]
        self.ys = [
            "male",
            "male",
            "male",
            "male",
            "female",
            "female",
            "female",
            "female",
        ]
        self.model = NaiveBayes.train(self.xs, self.ys)
        self.test = [6, 130, 8]

    def test_train_function_no_training_set(self):
        self.assertRaises(ValueError, NaiveBayes.train, [], self.ys)

    def test_train_function_input_lengths(self):
        ys = copy.copy(self.ys)
        ys.pop()
        self.assertRaises(ValueError, NaiveBayes.train, self.xs, ys)

    def test_train_function_uneven_dimension_of_training_set(self):
        xs = copy.copy(self.xs)
        xs[0] = [1]
        self.assertRaises(ValueError, NaiveBayes.train, xs, self.ys)

    def test_train_function_with_priors(self):
        model = NaiveBayes.train(self.xs, self.ys, priors={"male": 0.1, "female": 0.9})
        result = NaiveBayes.calculate(model, self.test, scale=True)
        expected = -692.0
        self.assertEqual(expected, round(result["male"]))

    def test_classify_function(self):
        expected = "female"
        result = NaiveBayes.classify(self.model, self.test)
        self.assertEqual(expected, result)

    def test_calculate_function_wrong_dimensionality(self):
        xs = self.xs[0]
        xs.append(100)
        self.assertRaises(ValueError, NaiveBayes.calculate, self.model, xs)

    def test_calculate_function_with_scale(self):
        result = NaiveBayes.calculate(self.model, self.test, scale=True)
        expected = -689.0
        self.assertEqual(expected, round(result["male"]))


if __name__ == "__main__":
    runner = unittest.TextTestRunner(verbosity=2)
    unittest.main(testRunner=runner)
