"""
Classes for index files that map genomic intervals to values.

:Authors: James Taylor (james@bx.psu.edu), Bob Harris (rsharris@bx.psu.edu)

An interval index file maps genomic intervals to values.

This implementation writes version 1 file format, and reads versions 0 and 1.

Index File Format
-----------------

All fields are in big-endian format (most significant byte first).

All intervals are origin-zero, inclusive start, exclusive end.

The file begins with an index file header, then is immediately followed
by an index table.  The index table points to index headers, and index
headers point to bins.  Index headers and bins are referenced via pointers
(file offsets), and can be placed more or less anywhere in the file.

File header
~~~~~~~~~~~

============ ===========   =================================================
offset 0x00: 2C FF 80 0A   magic number
offset 0x04: 00 00 00 01   version (00 00 00 00 is also supported)
offset 0x08: 00 00 00 2A   (N) number of index sets
offset 0x0C:  ...          index table
============ ===========   =================================================

Index table
~~~~~~~~~~~

The index table is a list of N index headers, packed sequentially and
sorted by name.  The first begins at offset 0x0C.  Each header describes
one set of intervals.

============ ===========   =================================================
offset:      xx xx xx xx   (L) length of index src name
offset+4:     ...          index src name (e.g. canFam1.chr1)
offset+4+L:  xx xx xx xx   offset (in this file) to index data
offset+8+L:  xx xx xx xx   (B) number of bytes in each value;  for version
                           0, this field is absent, and B is assumed to be 4
============ ===========   =================================================

Index data
~~~~~~~~~~

The index data for (for one index table) consists of the overall range of
intervals followed by an array of pointers to bins.  The length of the
array is 1+binForRange(maxEnd-1,maxEnd), where maxEnd is the maximum
interval end.

============ ===========   =================================================
offset:      xx xx xx xx   minimum interval start
offset+4:    xx xx xx xx   maximum interval end
offset+8:    xx xx xx xx   offset (in this file) to bin 0
offset+12:   xx xx xx xx   number of intervals in bin 0
offset+16:   xx xx xx xx   offset (in this file) to bin 1
offset+20:   xx xx xx xx   number of intervals in bin 1
...          ...           ...
============ ===========   =================================================

Bin
~~~

A bin is an array of (start,end,val), sorted by increasing start (with
end and val as tiebreakers).  Note that bins may be empty (the number of
intervals indicated in the index data is zero).  Note that B is determined
from the appropriate entry in the index table.

============ ===========   =================================================
offset:      xx xx xx xx   start for interval 1
offset+4:    xx xx xx xx   end   for interval 1
offset+8:     ...          (B bytes) value for interval 1
offset+8+B:  xx xx xx xx   start for interval 2
offset+12+B: xx xx xx xx   end   for interval 2
offset+16+B:  ...          (B bytes) value for interval 2
...          ...           ...
============ ===========   =================================================
"""

import os.path
import sys
from bisect import (
    insort,
    insort_right,
)
from struct import (
    calcsize,
    pack,
    unpack,
)
from warnings import warn

from bx.misc import filecache

try:
    from bx.misc import seekbzip2
except ImportError:
    seekbzip2 = None

try:
    from bx.misc import seeklzop
except ImportError:
    seeklzop = None

__all__ = ["Indexes", "Index"]

MAGIC = 0x2CFF800A
VERSION = 2

# These three constants determine the structure of the default binning strategy
BIN_LEVELS = 6  # Number of levels of bins to build
BIN_FIRST_SHIFT = 17  # Number of bits for the bottom level bin
BIN_NEXT_SHIFT = 3  # Number of bits for each higher level bin

# Build offset and max size arrays for each bin level
BIN_OFFSETS = [1, 0]
BIN_OFFSETS_MAX = [(1 << BIN_FIRST_SHIFT << BIN_NEXT_SHIFT), (1 << BIN_FIRST_SHIFT)]
for i in range(BIN_LEVELS - 2):
    BIN_OFFSETS.insert(0, (2 ** (3 * (i + 1))) + BIN_OFFSETS[0])
    BIN_OFFSETS_MAX.insert(0, (BIN_OFFSETS_MAX[0] << BIN_NEXT_SHIFT))
# The maximum size for the top bin is actually bigger than the signed integers
# we use to store positions in the file, so we'll change it to prevent confusion
BIN_OFFSETS_MAX[0] = 2**63

# Constants for the minimum and maximum size of the overall interval
MIN = 0
OLD_MAX = 512 * 1024 * 1024  # Maximum size supported by versions < 2
DEFAULT_MAX = 512 * 1024 * 1024  # Default max size to use when none is passed
MAX = 2**31  # Absolute max size (limited by file format)


def offsets_for_max_size(max_size):
    """
    Return the subset of offsets needed to contain intervals over (0,max_size)
    """
    offset_index = None
    for i, off_max in enumerate(reversed(BIN_OFFSETS_MAX)):
        if max_size <= off_max:
            offset_index = i
            break
    if offset_index is None:
        raise Exception("%d is larger than the maximum possible size (%d)" % (max_size, BIN_OFFSETS_MAX[0]))
    return BIN_OFFSETS[(len(BIN_OFFSETS) - offset_index - 1):]


def bin_for_range(start, end, offsets=None):
    """Find the smallest bin that can contain interval (start,end)"""
    if offsets is None:
        offsets = BIN_OFFSETS
    start_bin, end_bin = start, max(start, end - 1)
    start_bin >>= BIN_FIRST_SHIFT
    end_bin >>= BIN_FIRST_SHIFT
    for offset in offsets:
        if start_bin == end_bin:
            return offset + start_bin
        else:
            start_bin >>= BIN_NEXT_SHIFT
            end_bin >>= BIN_NEXT_SHIFT
    raise Exception("Interval (%d,%d) out of range" % (start, end))


class AbstractMultiIndexedAccess:
    """
    Allows accessing multiple indexes / files as if they were one
    """

    indexed_access_class = None

    def __init__(self, filenames, index_filenames=None, keep_open=False, use_cache=False, **kwargs):
        # TODO: Handle index_filenames argument
        self.indexes = [
            self.new_indexed_access(fname, keep_open=keep_open, use_cache=use_cache, **kwargs) for fname in filenames
        ]

    def new_indexed_access(self, data_filename, index_filename=None, keep_open=False, **kwargs):
        return self.indexed_access_class(data_filename, index_filename, keep_open, **kwargs)

    def get(self, src, start, end):
        return list(self.get_as_iterator(src, start, end))

    def get_as_iterator(self, src, start, end):
        for block, _index, _offset in self.get_as_iterator_with_index_and_offset(src, start, end):
            yield block

    def get_as_iterator_with_index_and_offset(self, src, start, end):
        for index in self.indexes:
            yield from index.get_as_iterator_with_index_and_offset(src, start, end)

    def close(self):
        for index in self.indexes:
            index.close()


class AbstractIndexedAccess:
    """Indexed access to a data using overlap queries, requires an index file"""

    def __init__(self, data_filename, index_filename=None, keep_open=False, use_cache=False, **kwargs):
        self.data_kwargs = kwargs
        self.data_filename = data_filename
        if data_filename.endswith(".bz2"):
            if seekbzip2 is None:
                raise Exception("Trying to open .bz2 file but no seekbzip2 module found")
            table_filename = data_filename + "t"
            self.table_filename = table_filename
            if not os.path.exists(table_filename):
                raise Exception("Cannot find bz2t file for: " + data_filename)
            self.file_type = "bz2t"
            # Strip .bz2 from the filename before adding ".index"
            data_filename_root = data_filename[:-4]
        elif data_filename.endswith(".lzo"):
            if seeklzop is None:
                raise Exception("Trying to open .lzo file but no seeklzop module found")
            table_filename = data_filename + "t"
            self.table_filename = table_filename
            if not os.path.exists(table_filename):
                raise Exception("Cannot find lzot file for: " + data_filename)
            self.file_type = "lzot"
            # Strip .lzo from the filename before adding ".index"
            data_filename_root = data_filename[:-4]
        else:
            self.file_type = "plain"
            data_filename_root = data_filename
        # Open index
        if index_filename is None:
            index_filename = data_filename_root + ".index"
        self.indexes = Indexes(filename=index_filename)
        # Use a file cache?
        self.use_cache = use_cache
        # Open now?
        if keep_open:
            self.f = self.open_data()
        else:
            self.f = None

    def close(self):
        if self.f:
            self.f.close()
            self.f = None

    def open_data(self):
        if self.file_type == "plain":
            return open(self.data_filename, "rb")
        elif self.file_type == "bz2t":
            f = seekbzip2.SeekableBzip2File(self.data_filename, self.table_filename)
            if self.use_cache:
                return filecache.FileCache(f, f.size)
            else:
                return f
        elif self.file_type == "lzot":
            if self.use_cache:
                block_cache_size = 20
            else:
                block_cache_size = 0
            f = seeklzop.SeekableLzopFile(self.data_filename, self.table_filename, block_cache_size=block_cache_size)
            return f

    def get(self, src, start, end):
        return list(self.get_as_iterator(src, start, end))

    def get_as_iterator(self, src, start, end):
        for val, _index, _offset in self.get_as_iterator_with_index_and_offset(src, start, end):
            yield val

    def get_as_iterator_with_index_and_offset(self, src, start, end):
        for _val_start, _val_end, val in self.indexes.find(src, start, end):
            yield self.get_at_offset(val), self, val

    def get_at_offset(self, offset):
        if self.f:
            self.f.seek(offset)
            return self.read_at_current_offset(self.f, **self.data_kwargs)
        else:
            f = self.open_data()
            try:
                f.seek(offset)
                return self.read_at_current_offset(f, **self.data_kwargs)
            finally:
                f.close()

    def read_at_current_offset(self, file, **kwargs):
        raise TypeError("Abstract Method")


class Indexes:
    """A set of indexes, each identified by a unique name"""

    def __init__(self, filename=None):
        self.indexes = {}
        if filename is not None:
            self.open(filename)

    def add(self, name, start, end, val, max=DEFAULT_MAX):
        if name not in self.indexes:
            self.indexes[name] = Index(max=max)
        self.indexes[name].add(start, end, val)

    def get(self, name):
        if self.indexes[name] is None:
            offset, value_size = self.offsets[name]
            self.indexes[name] = Index(
                filename=self.filename, offset=offset, value_size=value_size, version=self.version
            )
        return self.indexes[name]

    def find(self, name, start, end):
        if name in self.indexes:
            return self.get(name).find(start, end)
        else:
            return []

    def open(self, filename):
        self.filename = filename
        self.offsets = {}  # (will map key to (offset,value_size))
        with open(filename, "rb") as f:
            magic, version, length = read_packed(f, ">3I")
            if magic != MAGIC:
                raise Exception("File does not have expected header")
            if version > VERSION:
                warn(
                    "File claims version %d, I don't known anything about versions beyond %d. Attempting to continue",
                    version,
                    VERSION,
                )
            self.version = version
            for _ in range(length):
                key_len = read_packed(f, ">I")
                key = f.read(key_len).decode()
                offset = read_packed(f, ">I")
                if version == 0:
                    value_size = 4
                else:
                    value_size = read_packed(f, ">I")
                    assert value_size % 4 == 0, f"unsupported value size: {value_size}"
                self.indexes[key] = None
                self.offsets[key] = (offset, value_size)

    def write(self, f):
        keys = sorted(self.indexes.keys())
        # First determine the size of the header
        base = calcsize(">3I")
        for key in keys:
            key = str(key)
            base += calcsize(">I")
            base += len(key)
            base += calcsize(">2I")
        # Now actually write the header
        write_packed(f, ">3I", MAGIC, VERSION, len(self.indexes))
        # And write the index table
        for key in keys:
            key = str(key)
            # Write the string prefixed by its length (pascal!)
            write_packed(f, ">I", len(key))
            f.write(key.encode())
            # Write offset
            write_packed(f, ">I", base)
            base += self.indexes[key].bytes_required()
            # Write value size
            write_packed(f, ">I", self.indexes[key].value_size)
        # And finally write each index in order
        for key in keys:
            self.indexes[key].write(f)


class Index:
    def __init__(self, min=MIN, max=DEFAULT_MAX, filename=None, offset=0, value_size=None, version=None):
        self._value_size = value_size
        self.max_val = 1  # (1, rather than 0, to force value_size > 0)
        if filename is None:
            self.new(min, max)
        else:
            self.open(filename, offset, version)

    def get_value_size(self):
        if self._value_size is not None:
            return self._value_size
        else:
            return round_up_to_4(bytes_of(self.max_val))

    value_size = property(fget=get_value_size)

    def new(self, min, max):
        """Create an empty index for intervals in the range min, max"""
        # Ensure the range will fit given the shifting strategy
        assert MIN <= min <= max <= MAX
        self.min = min
        self.max = max
        # Determine offsets to use
        self.offsets = offsets_for_max_size(max)
        # Determine the largest bin we will actually use
        self.bin_count = bin_for_range(max - 1, max, offsets=self.offsets) + 1
        # Create empty bins
        self.bins = [[] for i in range(self.bin_count)]

    def open(self, filename, offset, version):
        self.filename = filename
        self.offset = offset
        # Open the file and seek to where we expect our header
        f = open(filename, "rb")
        f.seek(offset)
        # Read min/max
        min, max = read_packed(f, ">2I")
        self.new(min, max)
        # Decide how many levels of bins based on 'max'
        if version < 2:
            # Prior to version 2 all files used the bins for 512MB
            self.offsets = offsets_for_max_size(OLD_MAX - 1)
        else:
            self.offsets = offsets_for_max_size(max)
        # Read bin indexes
        self.bin_offsets = []
        self.bin_sizes = []
        for _ in range(self.bin_count):
            o, s = read_packed(f, ">2I")
            self.bin_offsets.append(o)
            self.bin_sizes.append(s)
        # Initialize bins to None, indicating that they need to be loaded
        self.bins = [None for _ in range(self.bin_count)]

    def add(self, start, end, val):
        """Add the interval (start,end) with associated value val to the index"""
        insort(self.bins[bin_for_range(start, end, offsets=self.offsets)], (start, end, val))
        assert val >= 0
        self.max_val = max(self.max_val, val)

    def find(self, start, end):
        rval = []
        start_bin = (max(start, self.min)) >> BIN_FIRST_SHIFT
        end_bin = (min(end, self.max) - 1) >> BIN_FIRST_SHIFT
        for offset in self.offsets:
            for i in range(start_bin + offset, end_bin + offset + 1):
                if self.bins[i] is None:
                    self.load_bin(i)
                # Iterate over bin and insert any overlapping elements into return value
                for el_start, el_end, val in self.bins[i]:
                    if el_start < end and el_end > start:
                        insort_right(rval, (el_start, el_end, val))
            start_bin >>= BIN_NEXT_SHIFT
            end_bin >>= BIN_NEXT_SHIFT
        return rval

    def iterate(self):
        for i in range(self.bin_count):
            if self.bins[i] is None:
                self.load_bin(i)
            yield from self.bins[i]

    def load_bin(self, index):
        bin = []
        if self.bin_sizes[index] == 0:
            self.bins[index] = bin
            return
        f = open(self.filename, "rb")
        f.seek(self.bin_offsets[index])
        # One big read for happy NFS
        item_size = self.value_size + calcsize(">2I")
        buffer = f.read(self.bin_sizes[index] * item_size)
        for i in range(self.bin_sizes[index]):
            start, end = unpack(">2I", buffer[i * item_size : i * item_size + 8])
            val = unpack_uints(buffer[i * item_size + 8 : (i + 1) * item_size])
            bin.append((start, end, val))
        self.bins[index] = bin
        f.close()

    def write(self, f):
        value_size = self.value_size
        item_size = value_size + calcsize(">2I")
        # Write min/max
        write_packed(f, ">2I", self.min, self.max)
        # Write table of bin sizes and offsets
        base = f.tell() + self.bin_count * calcsize(">2I")
        for bin in self.bins:
            write_packed(f, ">2I", base, len(bin))
            base += len(bin) * item_size
        # Write contents of each bin
        for bin in self.bins:
            for start, end, val in bin:
                write_packed(f, ">2I", start, end)
                write_packed_uints(f, val, value_size)

    def bytes_required(self):
        item_size = self.value_size + calcsize(">2I")
        rval = calcsize(">2I")
        rval += self.bin_count * calcsize(">2I")
        for bin in self.bins:
            rval += len(bin) * item_size
        return rval


def write_packed(f, pattern, *vals):
    f.write(pack(pattern, *vals))


def read_packed(f, pattern):
    rval = unpack(pattern, f.read(calcsize(pattern)))
    if len(rval) == 1:
        return rval[0]
    return rval


def write_packed_uints(f, v, num_bytes):
    if num_bytes < 4:
        write_packed(f, ">I", v)
    else:
        parts = []
        while num_bytes > 0:
            parts.append(v & 0xFFFFFFFF)
            v >>= 32
            num_bytes -= 4
        parts.reverse()  # (write most-significant chunk first)
        write_packed(f, ">%dI" % len(parts), *parts)


def unpack_uints(parts):
    chunks = len(parts) / 4
    vals = unpack(">%dI" % chunks, parts)
    val = vals[0]
    for v in vals[1:]:
        val = (val << 32) + v
    return val


def bytes_of(v):
    assert v > 0
    b = 0
    while v > 0:
        v >>= 8
        b += 1
    return b


def round_up_to_4(v):
    if v % 4 == 0:
        return v
    else:
        return v + 4 - (v % 4)
